Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection

被引:25
作者
Azzouz-Olden, Farida [1 ]
Hunt, Arthur [2 ]
DeGrandi-Hoffman, Gloria [3 ]
机构
[1] Kentucky State Univ, 400 East Main St, Frankfort, KY 40601 USA
[2] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY 40546 USA
[3] ARS, USDA, Bee Res Ctr, 2000 East Allen Rd, Tucson, AZ 85719 USA
来源
BMC GENOMICS | 2018年 / 19卷
关键词
RNA-seq; Nutrition; Nosema; Honey bee; Immunity; POLLEN SUBSTITUTE DIETS; DIVISION-OF-LABOR; IMMUNE FUNCTION; VITAMIN-C; PARASITOPHOROUS VACUOLE; DROSOPHILA-MELANOGASTER; NUCLEAR ACCUMULATION; EXPRESSION PROFILES; JUVENILE-HORMONE; CIRCADIAN CLOCK;
D O I
10.1186/s12864-018-5007-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results: Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited 'adult behavior', and developmental processes suggesting transition to foraging. Finally, it altered the 'circadian rhythm', reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess 'Macromolecular complex assembly' was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions: These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen.
引用
收藏
页数:20
相关论文
共 146 条
  • [1] Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees
    Alaux, Cedric
    Dantec, Christelle
    Parrinello, Hughes
    Le Conte, Yves
    [J]. BMC GENOMICS, 2011, 12
  • [2] Diet effects on honeybee immunocompetence
    Alaux, Cedric
    Ducloz, Francois
    Crauser, Didier
    Le Conte, Yves
    [J]. BIOLOGY LETTERS, 2010, 6 (04) : 562 - 565
  • [3] Honey bee aggression supports a link between gene regulation and behavioral evolution
    Alaux, Cedric
    Sinha, Saurabh
    Hasadsri, Linda
    Hunt, Greg J.
    Guzman-Novoa, Ernesto
    DeGrandi-Hoffman, Gloria
    Luis Uribe-Rubio, Jose
    Southey, Bruce R.
    Rodriguez-Zas, Sandra
    Robinson, Gene E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) : 15400 - 15405
  • [4] Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees
    Amdam, GV
    Simoes, ZLP
    Hagen, A
    Norberg, K
    Schroder, K
    Mikkelsen, O
    Kirkwood, TBL
    Omholt, SW
    [J]. EXPERIMENTAL GERONTOLOGY, 2004, 39 (05) : 767 - 773
  • [5] Social exploitation of vitellogenin
    Amdam, GV
    Norberg, K
    Hagen, A
    Omholt, SW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) : 1799 - 1802
  • [6] The regulatory anatomy of honeybee lifespan
    Amdam, GV
    Omholt, SW
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2002, 216 (02) : 209 - 228
  • [7] Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies
    Ament, Seth A.
    Corona, Miguel
    Pollock, Henry S.
    Robinson, Gene E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (11) : 4226 - 4231
  • [8] Mechanisms of stable lipid loss in a social insect
    Ament, Seth A.
    Chan, Queenie W.
    Wheeler, Marsha M.
    Nixon, Scott E.
    Johnson, S. Peir
    Rodriguez-Zas, Sandra L.
    Foster, Leonard J.
    Robinson, Gene E.
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2011, 214 (22) : 3808 - 3821
  • [9] Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee
    Aufauvre, Julie
    Biron, David G.
    Vidau, Cyril
    Fontbonne, Regis
    Roudel, Mathieu
    Diogon, Marie
    Vigues, Bernard
    Belzunces, Luc P.
    Delbac, Frederic
    Blot, Nicolas
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [10] Bailey L., 1981, Honey bee pathology