STABILITY AND HOPF BIFURCATION ANALYSIS IN COUPLED LIMIT CYCLE OSCILLATORS WITH TIME DELAY

被引:0
|
作者
Li, Yanqiu [1 ]
Wang, Hongbin [1 ]
Jiang, Weihua [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
来源
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL | 2010年 / 6卷 / 04期
关键词
Stability; Time delay; Hopf bifurcation; Degenerate double Hopf bifurcation; Chaos; NONLINEAR OSCILLATORS; SYSTEMS; DISCRETE; NETWORKS; DYNAMICS; FEEDBACK; BEHAVIOR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The amplitude death in coupled systems gets great concern. We investigate the stability and Hopf bifurcation at zero equilibrium point. The amplitude death region is obtained. Based on the existence of Hopf bifurcation, the nominal form method and center manifold theorem are used to determine the direction of the Hopf bifurcation and the stability of the bifurcating periodic solution. Furthermore, the existence of degenerate double Hopf bifurcation is studied. Quasi-periodicity and chaos are seen at the critical values of degenerate double Hopf bifurcation by numerical simulations. We affirm that chaos really occurs by the largest Liapunov exponent.
引用
收藏
页码:1823 / 1832
页数:10
相关论文
共 50 条
  • [1] Time delay effects on coupled limit cycle oscillators at Hopf bifurcation
    Reddy, DVR
    Sen, A
    Johnston, GL
    PHYSICA D, 1999, 129 (1-2): : 15 - 34
  • [2] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Dadi, Z.
    Afsharnezhad, Z.
    Pariz, N.
    NONLINEAR DYNAMICS, 2012, 70 (01) : 155 - 169
  • [3] Double Hopf bifurcation and quasi-periodic attractors in delay-coupled limit cycle oscillators
    Li, Yanqiu
    Jiang, Weihua
    Wang, Hongbin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1114 - 1126
  • [4] Hopf Bifurcation of the Ring Unidirectionally Coupled Toda Oscillators with Distributed Delay
    Cao, Yang
    Guo, Peiyu
    Guerrini, Luca
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (12):
  • [5] Hopf bifurcation and chaos in an inertial neuron system with coupled delay
    Ge JuHong
    Xu Jian
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (09) : 2299 - 2309
  • [6] Stability and Bifurcation Analysis in Transformer Coupled Oscillators
    Kengne, J.
    Chedjou, J. C.
    Kyamakya, K.
    Moussa, I.
    PROCEEDINGS OF INDS '09: SECOND INTERNATIONAL WORKSHOP ON NONLINEAR DYNAMICS AND SYNCHRONIZATION 2009, 2009, 4 : 30 - +
  • [7] Stability switches and Hopf bifurcations in a pair of delay-coupled oscillators
    Song, Yongli
    Wei, Junjie
    Yuan, Yuan
    JOURNAL OF NONLINEAR SCIENCE, 2007, 17 (02) : 145 - 166
  • [8] Cooperative Motion of Coupled Limit Cycle Oscillators with Delay
    Sun, Xiuting
    Xu, Jian
    DYNAMICS FOR SUSTAINABLE ENGINEERING, VOL 1, 2011, : 385 - 393
  • [9] Stability and bifurcation analysis in the delay-coupled nonlinear oscillators
    Z. Dadi
    Z. Afsharnezhad
    N. Pariz
    Nonlinear Dynamics, 2012, 70 : 155 - 169
  • [10] Stability and bifurcation analysis in the delay-coupled van der Pol oscillators
    Zhang, Jianming
    Gu, Xinsheng
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (09) : 2291 - 2299