Resource potential of lunar permanently shadowed regions

被引:48
作者
Brown, H. M. [1 ]
Boyd, A. K. [1 ]
Denevi, B. W. [2 ]
Henriksen, M. R. [1 ]
Manheim, M. R. [1 ]
Robinson, M. S. [1 ]
Speyerer, E. J. [1 ]
Wagner, R., V [1 ]
机构
[1] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
Moon; Surface; Regoliths; Ices; Data reduction techniques; ORBITER LASER ALTIMETER; SURFACE-WATER ICE; POLAR-REGIONS; NEUTRON DETECTOR; IN-SITU; MOON; VOLATILES; CRATERS; POLES; LAMP;
D O I
10.1016/j.icarus.2021.114874
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The lunar polar regions contain permanently shadowed regions (PSRs) or local topographic depressions that never receive direct sunlight. These environments (< 110 K) have the potential to cold-trap volatile materials in the form of ice, which are essential resources for exploration and industrialization of cislunar space and the Solar System. Orbital observations and those from the LCROSS impactor experiment provide evidence of the existence of water ice and other cold-trapped volatiles in PSRs; however, constraints on volatile abundance and distribution remain ambiguous as individual observations are not always in concord. Here we compile observations indicating the presence of volatiles from ten remotely sensed datasets in 65 PSRs to estimate the locations and mass of water ice deposits. Faustini, Cabeus, de Gerlache, Shoemaker, Haworth, Sverdrup, Slater, and Amundsen are likely the most resource-rich PSRs. Based on co-locations of observations indicative of surface frost and subsurface hydrogen abundance, we find that the craters with the highest potential mass in metric tons (t) of water ice include Cabeus (-11 x 10(6) t), Shoemaker (-5 x 10(6) t), Faustini (-4 x 10(6) t), de Gerlache (-3 x 10(6) t), and Haworth (-3 x 10(6) t). Future prospecting of lunar volatiles and water ice is contingent on filling knowledge gaps in resource potential, notably accurate measurements of grade and depth of volatiles. Our proposed ranking and estimates for resource tonnage are a tool to guide future orbital and landed missions that could accurately determine the resource potential of PSR deposits.
引用
收藏
页数:22
相关论文
共 100 条
[1]   Development of a Transformable Three-wheeled Lunar Rover: Tri-Star IV [J].
Aoki, Takeshi ;
Murayama, Yuki ;
Hirose, Shigeo .
JOURNAL OF FIELD ROBOTICS, 2014, 31 (01) :206-223
[2]   ICE IN THE LUNAR POLAR REGIONS [J].
ARNOLD, JR .
JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 (NB10) :5659-5668
[3]   Improved LOLA elevation maps for south pole landing sites: Error estimates and their impact on illumination conditions [J].
Barker, Michael K. ;
Mazarico, Erwan ;
Neumann, Gregory A. ;
Smith, David E. ;
Zuber, Maria T. ;
Head, James W. .
PLANETARY AND SPACE SCIENCE, 2021, 203
[4]   Measuring moonlight: An overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper [J].
Boardman, Joseph W. ;
Pieters, C. M. ;
Green, R. O. ;
Lundeen, S. R. ;
Varanasi, P. ;
Nettles, J. ;
Petro, N. ;
Isaacson, P. ;
Besse, S. ;
Taylor, L. A. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2011, 116
[5]  
Boyd A.K., 1992, LUNAR PLANET SCI L
[6]  
Bridenstine J., 2019, ARTEMIS IS OUR FUTUR
[7]  
Brown H.M., 2020, LUNAR PLANET SCI, P1765
[8]   The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon [J].
Cahill, Joshua T. S. ;
Thomson, B. J. ;
Patterson, G. Wesley ;
Bussey, D. Benjamin J. ;
Neish, Catherine D. ;
Lopez, Norberto R. ;
Turner, F. Scott ;
Aldridge, T. ;
McAdam, M. ;
Meyer, H. M. ;
Raney, R. K. ;
Carter, L. M. ;
Spudis, P. D. ;
Hiesinger, H. ;
Pasckert, J. H. .
ICARUS, 2014, 243 :173-190
[9]   A geologic model for lunar ice deposits at mining scales [J].
Cannon, Kevin M. ;
Britt, Daniel T. .
ICARUS, 2020, 347
[10]  
Cassell A.M., 2019, INT C FLIGHT VEH AER