Discriminative Clustering and Feature Selection for Brain MRI Segmentation

被引:88
作者
Kong, Youyong [1 ]
Deng, Yue [2 ]
Dai, Qionghai [3 ]
机构
[1] Southeast Univ, Sch Comp Sci & Engn, Nanjing 210000, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210000, Jiangsu, Peoples R China
[3] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
关键词
BrainMRI segmentation; feature selection; information theory; supervoxel; GAUSSIAN MIXTURE MODEL; IMAGE SEGMENTATION; FUZZY SEGMENTATION; STRATEGIES; ALGORITHM;
D O I
10.1109/LSP.2014.2364612
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatic segmentation of brain tissues from MRI is of great importance for clinical application and scientific research. Recent advancements in supervoxel-level analysis enable robust segmentation of brain tissues by exploring the inherent information among multiple features extracted on the supervoxels. Within this prevalent framework, the difficulties still remain in clustering uncertainties imposed by the heterogeneity of tissues and the redundancy of the MRI features. To cope with the aforementioned two challenges, we propose a robust discriminative segmentation method from the view of information theoretic learning. The prominent goal of the method is to simultaneously select the informative feature and to reduce the uncertainties of supervoxel assignment for discriminative brain tissue segmentation. Experiments on two brain MRI datasets verified the effectiveness and efficiency of the proposed approach.
引用
收藏
页码:573 / 577
页数:5
相关论文
共 24 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
[Anonymous], P 5 BERK S MATH STAT
[3]  
[Anonymous], 2014, IEEE T CYBERN
[4]   Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data [J].
Artaechevarria, Xabier ;
Munoz-Barrutia, Arrate ;
Ortiz-de-Solorzano, Carlos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1266-1277
[5]   A non-local fuzzy segmentation method: Application to brain MRI [J].
Caldairou, Benoit ;
Passat, Nicolas ;
Habas, Piotr A. ;
Studholme, Colin ;
Rousseau, Francois .
PATTERN RECOGNITION, 2011, 44 (09) :1916-1927
[6]   Brain tissue MR-image segmentation via optimum-path forest clustering [J].
Cappabianco, Fabio A. M. ;
Falcao, Alexandre X. ;
Yasuda, Clarissa L. ;
Udupa, Jayaram K. .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (10) :1047-1059
[7]   Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening [J].
Cheng, Jun ;
Liu, Jiang ;
Xu, Yanwu ;
Yin, Fengshou ;
Wong, Damon Wing Kee ;
Tan, Ngan-Meng ;
Tao, Dacheng ;
Cheng, Ching-Yu ;
Aung, Tin ;
Wong, Tien Yin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) :1019-1032
[8]  
Comes R., 2010, ADV NEURAL INFORM PR, V23, P775
[9]   Differences Help Recognition: A Probabilistic Interpretation [J].
Deng, Yue ;
Zhao, Yanyu ;
Liu, Yebin ;
Dai, Qionghai .
PLOS ONE, 2013, 8 (06)
[10]   Low-Rank Structure Learning via Nonconvex Heuristic Recovery [J].
Deng, Yue ;
Dai, Qionghai ;
Liu, Risheng ;
Zhang, Zengke ;
Hu, Sanqing .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (03) :383-396