Global well-posedness for the critical Schrodinger-Debye system

被引:5
|
作者
Carvajal, Xavier [1 ]
Gamboa, Pedro [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Debye system; Global well-posedness; A priori estimates;
D O I
10.4310/DPDE.2014.v11.n3.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish global well-posedness results for the initial value problem associated to the Schrodinger-Debye system in dimension two, for data in H-s(R-2) x L-2(R-2), 2/3 < s <= 1 and for data in H-1(R-2) x H-1(R-2).
引用
收藏
页码:251 / 268
页数:18
相关论文
共 50 条
  • [1] LOCAL AND GLOBAL WELL-POSEDNESS FOR THE CRITICAL SCHRODINGER-DEBYE SYSTEM
    Corcho, Adan J.
    Oliveira, Filipe
    Silva, Jorge Drumond
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3485 - 3499
  • [2] Global well-posedness results for the 2D-Schrodinger-Debye system
    dos Santos, Raphael Antunes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 22 - 45
  • [3] SHARP BILINEAR ESTIMATES AND WELL POSEDNESS FOR THE 1-D SCHRODINGER-DEBYE SYSTEM
    Corcho, Adan J.
    Matheus, Carlos
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (3-4) : 357 - 391
  • [4] Global well-posedness for the fractional Schrodinger-Boussinesq system
    Han, Lijia
    Zhang, Jingjun
    Guo, Boling
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (08) : 2644 - 2652
  • [5] Global well-posedness for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) : 649 - 669
  • [6] Scattering theory for the Schrodinger-Debye system
    Correia, Simao
    Oliveira, Filipe
    NONLINEARITY, 2018, 31 (07) : 3203 - 3227
  • [7] GLOBAL WELL-POSEDNESS FOR NONLINEAR SCHRODINGER EQUATIONS WITH ENERGY-CRITICAL DAMPING
    Feng, Binhua
    Zhao, Dun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] Local and global well-posedness for a quadratic Schrodinger system on Zoll manifolds
    Nogueira, Marcelo
    Panthee, Mahendra
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [9] Well-posedness for a quadratic derivative nonlinear Schrodinger system at the critical regularity
    Ikeda, Masahiro
    Kishimoto, Nobu
    Okamoto, Mamoru
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (04) : 747 - 798
  • [10] ON THE GLOBAL WELL-POSEDNESS OF ENERGY-CRITICAL SCHRODINGER EQUATIONS IN CURVED SPACES
    Ionescu, Alexandru D.
    Pausader, Benoit
    Staffilani, Gigliola
    ANALYSIS & PDE, 2012, 5 (04): : 705 - 746