Floquet thermalization: Symmetries and random matrix ensembles

被引:48
作者
Regnault, Nicolas [1 ,2 ]
Nandkishore, Rahul [3 ,4 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Paris Diderot, Univ Paris 06, CNRS,Sorbonne Univ,Sorbonne Paris Cite, Lab Pierre Aigrain,Ecole Normale Super,PSL Res Un, 24 Rue Lhomond, F-75231 Paris 05, France
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
关键词
QUANTUM-STATISTICAL-MECHANICS; SYSTEMS; LOCALIZATION; TRANSITION; CHAOS;
D O I
10.1103/PhysRevB.93.104203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the role of symmetries in determining the random matrix class describing quantum thermalization in a periodically driven many-body quantum system. Using a combination of analytical arguments and numerical exact diagonalization, we establish that a periodically driven "Floquet" system can be in a different random matrix class from the instantaneous Hamiltonian. A periodically driven system can thermalize even when the instantaneous Hamiltonian is integrable. A Floquet system that thermalizes in general can display integrable behavior at commensurate driving frequencies. When the instantaneous Hamiltonian and the Floquet operator both thermalize, the Floquet problem can be in the unitary class while the instantaneous Hamiltonian is always in the orthogonal class, and vice versa. We extract general principles regarding when a Floquet problem can thermalize to a different symmetry class from the instantaneous Hamiltonian. A (finite-sized) Floquet system can even display crossovers between different random matrix classes as a function of driving frequency.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Finite size scaling in crossover among different random matrix ensembles in microscopic lattice models
    Modak, Ranjan
    Mukerjee, Subroto
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [22] Wigner-Racah Algebra, Binary Correlations and Trace Propagation for Embedded Random Matrix Ensembles
    Kota, V. K. B.
    HITES 2012: HORIZONS OF INNOVATIVE THEORIES, EXPERIMENTS, AND SUPERCOMPUTING IN NUCLEAR PHYSICS, 2012, 403
  • [23] Embedded random matrix ensembles from nuclear structure and their recent applications
    Kota, V. K. B.
    Chavda, N. D.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2018, 27 (01):
  • [24] Universal K-matrix distribution in β=2 ensembles of random matrices
    Fyodorov, Y. V.
    Khoruzhenko, B. A.
    Nock, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (26)
  • [25] Rotationally invariant family of Levy-like random matrix ensembles
    Choi, Jinmyung
    Muttalib, K. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (15)
  • [26] Permutation entropy of indexed ensembles: quantifying thermalization dynamics
    Aragoneses, Andres
    Kapulkin, Arie
    Pattanayak, Arjendu K.
    JOURNAL OF PHYSICS-COMPLEXITY, 2023, 4 (02):
  • [27] Universality of a family of random matrix ensembles with logarithmic soft-confinement potentials
    Choi, Jinmyung
    Muttalib, K. A.
    PHYSICAL REVIEW B, 2010, 82 (10)
  • [28] Perturbation approach to multifractal dimensions for certain critical random-matrix ensembles
    Bogomolny, E.
    Giraud, O.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [29] Spectral statistics of Bernoulli matrix ensembles-a random walk approach (I)
    Joyner, Christopher H.
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (25)
  • [30] Embedded random matrix ensembles for complexity and chaos in finite interacting particle systems
    Kota, VKB
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 347 (03): : 223 - 288