The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction

被引:73
|
作者
Qu, Qingyun [1 ]
Ji, Shufang [1 ]
Chen, Yuanjun [1 ]
Wang, Dingsheng [1 ]
Li, Yadong [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
ACTIVE-SITES; CARBON-DIOXIDE; HIGHLY EFFICIENT; MESOPOROUS CARBON; ELECTROREDUCTION; FE; NITROGEN; COORDINATION; IRON; ELECTROCATALYSTS;
D O I
10.1039/d0sc07040h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) is viewed as a promising way to remove the greenhouse gas CO2 from the atmosphere and convert it into useful industrial products such as methane, methanol, formate, ethanol, and so forth. Single-atom site catalysts (SACs) featuring maximum theoretical atom utilization and a unique electronic structure and coordination environment have emerged as promising candidates for use in the CO2RR. The electronic properties and atomic structures of the central metal sites in SACs will be changed significantly once the types or coordination environments of the central metal sites are altered, which appears to provide new routes for engineering SACs for CO2 electrocatalysis. Therefore, it is of great importance to discuss the structural regulation of SACs at the atomic level and their influence on CO2RR activity and selectivity. Despite substantial efforts being made to fabricate various SACs, the principles of regulating the intrinsic electrocatalytic performances of the single-atom sites still needs to be sufficiently emphasized. In this perspective article, we present the latest progress relating to the synthesis and catalytic performance of SACs for the electrochemical CO2RR. We summarize the atomic-level regulation of SACs for the electrochemical CO2RR from five aspects: the regulation of the central metal atoms, the coordination environments, the interface of single metal complex sites, multi-atom active sites, and other ingenious strategies to improve the performance of SACs. We highlight synthesis strategies and structural design approaches for SACs with unique geometric structures and discuss how the structure affects the catalytic properties.
引用
收藏
页码:4201 / 4215
页数:15
相关论文
共 50 条
  • [31] Single-Atom Catalysts on Covalent Organic Frameworks for CO2 Reduction
    Wang, Rui
    Yuan, Yufei
    Bang, Ki-Taek
    Kim, Yoonseob
    ACS MATERIALS AU, 2023, 3 (01): : 28 - 36
  • [32] Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction
    Wong, Hon Ho
    Sun, Mingzi
    Wu, Tong
    Chan, Cheuk Hei
    Lu, Lu
    Lu, Qiuyang
    Chen, Baian
    Huang, Bolong
    ESCIENCE, 2024, 4 (01):
  • [33] Recent Advances on Single-Atom Catalysts for Photocatalytic CO2 Reduction
    Shang, Ziang
    Feng, Xueting
    Chen, Guanzhen
    Qin, Rong
    Han, Yunhu
    SMALL, 2023, 19 (48)
  • [34] Recent advancements in microenvironmental regulation of Single-Atom catalysts for electrochemical conversion of CO2 to CO
    Guo, Cao
    Li, Nianpeng
    Gao, Sanshuang
    Liu, Xijun
    Kong, Qingquan
    Hu, Guangzhi
    FUEL, 2024, 367
  • [35] Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction
    Pan, Fuping
    Zhang, Hanguang
    Liu, Zhenyu
    Cullen, David
    Liu, Kexi
    More, Karren
    Wu, Gang
    Wang, Guofeng
    Li, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26231 - 26237
  • [36] Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO
    Ma, Joonhee
    Cho, Jin Hyuk
    Lee, Kangwon
    Kim, Soo Young
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2023, 33 (02): : 29 - 46
  • [37] Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction
    Jung, Jae Young
    Kim, Sungjun
    Kim, Jeong-Gil
    Kim, Min Ji
    Lee, Kug-Seung
    Sung, Yung-Eun
    Kim, Pil
    Yoo, Sung Jong
    Lim, Hyung-Kyu
    Kim, Nam Dong
    NANO ENERGY, 2022, 97
  • [38] Rational design of copper-based single-atom alloy catalysts for electrochemical CO2 reduction
    Jiang, Jian-Chao
    Chen, Jun-Chi
    Zhao, Meng-die
    Yu, Qi
    Wang, Yang-Gang
    Li, Jun
    NANO RESEARCH, 2022, 15 (08) : 7116 - 7123
  • [39] Single atom-based catalysts for electrochemical CO2 reduction
    Sun, Qian
    Jia, Chen
    Zhao, Yong
    Zhao, Chuan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (07) : 1547 - 1597
  • [40] Recent advances on CO2 reduction reactions using single-atom catalysts
    Yan, Xianyao
    Duan, Chenyu
    Yu, Shuihua
    Dai, Bing
    Sun, Chaoying
    Chu, Huaqiang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190