Decoding of intended saccade direction in an oculomotor brain-computer interface

被引:9
作者
Jia, Nan [1 ,2 ]
Brincat, Scott L. [3 ,4 ]
Salazar-Gomez, Andres F. [1 ,5 ]
Panko, Mikhail [1 ,5 ]
Guenther, Frank H. [1 ,3 ,6 ,7 ]
Miller, Earl K. [3 ,4 ]
机构
[1] Boston Univ, Ctr Computat Neurosci & Neural Technol, 677 Beacon St, Boston, MA 02215 USA
[2] Boston Univ, Grad Program Cognit & Neural Syst, 677 Beacon St, Boston, MA 02215 USA
[3] MIT, Picower Inst Learning & Memory, 77 Massachusetts Ave,MIT Bldg 46-6241, Cambridge, MA 02139 USA
[4] MIT, Dept Brain & Cognit Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Boston Univ, Grad Program Neurosci, 677 Beacon St, Boston, MA 02215 USA
[6] Boston Univ, Dept Speech Language & Hearing Sci, 635 Commonwealth Ave, Boston, MA 02215 USA
[7] Boston Univ, Dept Biomed Engn, 44 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
brain-computer interface; eye movements; saccades; SEF; PFC; FEF; decoding; LOCAL-FIELD POTENTIALS; FRONTAL EYE FIELDS; NEURONAL-ACTIVITY; WORKING-MEMORY; MACHINE INTERFACE; MOTOR CORTEX; MULTIUNIT ACTIVITY; PREFRONTAL CORTEX; CORTICAL CONTROL; MOVEMENTS;
D O I
10.1088/1741-2552/aa5a3e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. To date, invasive brain-computer interface (BCI) research has largely focused on replacing lost limb functions using signals from the hand/arm areas of motor cortex. However, the oculomotor system may be better suited to BCI applications involving rapid serial selection from spatial targets, such as choosing from a set of possible words displayed on a computer screen in an augmentative and alternative communication (AAC) application. Here we aimed to demonstrate the feasibility of a BCI utilizing the oculomotor system. Approach. We developed a chronic intracortical BCI in monkeys to decode intended saccadic eye movement direction using activity from multiple frontal cortical areas. Main results. Intended saccade direction could be decoded in real time with high accuracy, particularly at contralateral locations. Accurate decoding was evident even at the beginning of the BCI session; no extensive BCI experience was necessary. High-frequency (80-500 Hz) local field potential magnitude provided the best performance, even over spiking activity, thus simplifying future BCI applications. Most of the information came from the frontal and supplementary eye fields, with relatively little contribution from dorsolateral prefrontal cortex. Significance. Our results support the feasibility of high-accuracy intracortical oculomotor BCIs that require little or no practice to operate and may be ideally suited for 'point and click' computer operation as used in most current AAC systems.
引用
收藏
页数:13
相关论文
共 51 条
[1]  
[Anonymous], 2001, ELEMENTS STAT LEARNI
[2]   Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons [J].
Armstrong, Katherine M. ;
Chang, Mindy H. ;
Moore, Tirin .
JOURNAL OF NEUROSCIENCE, 2009, 29 (50) :15621-15629
[3]   Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials [J].
Bansal, Arjun K. ;
Truccolo, Wilson ;
Vargas-Irwin, Carlos E. ;
Donoghue, John P. .
JOURNAL OF NEUROPHYSIOLOGY, 2012, 107 (05) :1337-1355
[4]   Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information [J].
Belitski, Andrei ;
Gretton, Arthur ;
Magri, Cesare ;
Murayama, Yusuke ;
Montemurro, Marcelo A. ;
Logothetis, Nikos K. ;
Panzeri, Stefano .
JOURNAL OF NEUROSCIENCE, 2008, 28 (22) :5696-5709
[5]   Chronux: A platform for analyzing neural signals [J].
Bokil, Hemant ;
Andrews, Peter ;
Kulkarni, Jayant E. ;
Mehta, Samar ;
Mitra, Partha P. .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 192 (01) :146-151
[6]   Single-trial decoding of intended eye movement goals from lateral prefrontal cortex neural ensembles [J].
Boulay, Chadwick B. ;
Pieper, Florian ;
Leavitt, Matthew ;
Martinez-Trujillo, Julio ;
Sachs, Adam J. .
JOURNAL OF NEUROPHYSIOLOGY, 2016, 115 (01) :486-499
[7]  
Brincat S.L., 2013, Proceedings of the Fifth International Brain-Computer Interface Meeting: Defining the Future, P72, DOI [10.3217/978-3-85125-260-6-34, DOI 10.3217/978-3-85125-260-6-34]
[8]   PRIMATE FRONTAL EYE FIELDS .2. PHYSIOLOGICAL AND ANATOMICAL CORRELATES OF ELECTRICALLY EVOKED EYE-MOVEMENTS [J].
BRUCE, CJ ;
GOLDBERG, ME ;
BUSHNELL, MC ;
STANTON, GB .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 54 (03) :714-734
[9]   Learning to control a brain-machine interface for reaching and grasping by primates [J].
Carmena, JM ;
Lebedev, MA ;
Crist, RE ;
O'Doherty, JE ;
Santucci, DM ;
Dimitrov, DF ;
Patil, PG ;
Henriquez, CS ;
Nicolelis, MAL .
PLOS BIOLOGY, 2003, 1 (02) :193-208
[10]   Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task [J].
Chafee, MV ;
Goldman-Rakic, PS .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (06) :2919-2940