Spread Spectrum Time Domain Reflectometry and Steepest Descent Inversion to Measure Complex Impedance

被引:3
|
作者
Kingston, Samuel R. [1 ]
Ellis, Hunter [1 ]
Saleh, Mashad U. [1 ]
Benoit, Evan J. [1 ]
Edun, Ayobami [2 ]
Furse, Cynthia M. [1 ,3 ]
Scarpulla, Michael A. [1 ]
Harley, Joel B. [2 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[2] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[3] LiveWire Innovat, Camarillo, CA 93012 USA
关键词
PARAMETERS;
D O I
10.47037/2020.ACES.J.360211
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a method for estimating complex impedances using reflectometry and a modified steepest descent inversion algorithm. We simulate spread spectrum time domain reflectometry (SSTDR), which can measure complex impedances on energized systems for an experimental setup with resistive and capacitive loads. A parametric function, which includes both a misfit function and stabilizer function, is created. The misfit function is a least squares estimate of how close the model data matches observed data. The stabilizer function prevents the steepest descent algorithm from becoming unstable and diverging. Steepest descent iteratively identifies the model parameters that minimize the parametric function. We validate the algorithm by correctly identifying the model parameters (capacitance and resistance) associated with simulated SSTDR data, with added 3 dB white Gaussian noise. With the stabilizer function, the steepest descent algorithm estimates of the model parameters are bounded within a specified range. The errors for capacitance (220pF to 820pF) and resistance (50 Omega to 270 Omega) are < 10%, corresponding to a complex impedance magnitude vertical bar R + 1/j omega C vertical bar of 53 Omega to 510 Omega.
引用
收藏
页码:190 / 198
页数:9
相关论文
共 50 条
  • [31] A Novel Method Based on Spread-Spectrum Time-Domain Reflectometry for Improving the Distance of Cable Fault Detection
    Liu, Dali
    Feng, Hongwei
    Yang, Hongyuan
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 9440 - 9446
  • [32] Degradation Detection of Thermally Aged SiC and Si Power MOSFETs using Spread Spectrum Time Domain Reflectometry (SSTDR)
    Hanif, Abu
    Khan, Faisal
    2018 IEEE 6TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), 2018, : 18 - 23
  • [33] Broadband complex dielectric permittivity: Combined impedance spectroscopy and time domain reflectometry (vol 235, 114993, 2024)
    Hakiki, Farizal
    Lin, Wan-Ting
    Lin, Chih-Ping
    MEASUREMENT, 2025, 243
  • [34] A 1D inversion for non-invasive time domain reflectometry
    Platt, Ian G.
    Woodhead, Ian M.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (05)
  • [35] Broadband Complex Dielectric Characterization of Soils by Time Domain Reflectometry
    Ngui, Yin Jeh
    Lin, Chih-Ping
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONGRESS ON ENVIRONMENTAL GEOTECHNICS, VOL 1: TOWARDS A SUSTAINABLE GEOENVIRONMENT, 2019, : 731 - 738
  • [36] A spread spectrum system with a time domain processing device
    He, SP
    Lo, TKY
    Litva, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1997, 44 (06): : 447 - 452
  • [37] A spread spectrum system with a time domain processing device
    He, SP
    Litva, J
    Lo, T
    MILCOM 97 PROCEEDINGS, VOLS 1-3, 1997, : 827 - 831
  • [38] TIME DOMAIN PROCESSING MODE SPREAD SPECTRUM SYSTEM
    何世平
    Journal of Electronics(China), 1995, (03) : 276 - 283
  • [39] Spread spectrum system with a time domain processing device
    McMaster Univ, Hamilton, Canada
    IEEE Trans Circuits Syst II Analog Digital Signal Process, 6 (447-452):
  • [40] Comparison of Broadband Impedance Spectroscopy and Time Domain Reflectometry for Locating Cable Degradation
    Hirai, Naoshi
    Yamada, Takayuki
    Ohki, Yoshimichi
    PROCEEDINGS OF 2012 IEEE INTERNATIONAL CONFERENCE ON CONDITION MONITORING AND DIAGNOSIS (IEEE CMD 2012), 2012, : 229 - 232