MODELING AND SIMULATION OF AN ULTRA-STABLE CRYOSTAT FOR NAHUAL

被引:0
|
作者
Sosa-Cabrera, D. [1 ]
Fuentes, F. J. [1 ]
机构
[1] Inst Astrofis Canarias, Tenerife 38200, Spain
来源
EMSS 2009: 21ST EUROPEAN MODELING AND SIMULATION SYMPOSIUM, VOL I | 2009年
关键词
telescope instrumentation; Finite Element Analysis; cryostat; thermal stability;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
NAHUAL is a cryogenic high resolution near infrared echelle spectrograph for the GTC (Gran Telescopio de Canarias). The main goal of the instrument is to deliver high-precision radial velocities for cool stars at IR wavelengths. NAHUAL is conceived as a highly specialized instrument, capable of finding habitable planets around red dwarfs (Martin 2008). IR instruments must operate under ultra-cold temperatures in temperature-controlled vacuum containers called dewars or cryostats to reduce disruption by heat noise. The use of LN2 instead of mechanical coolers to cool the instrument is mandatory to avoid noise vibrations. NAHUAL concept is adapted from GIANO@TNG, with a requirement of thermal stability in the optical bench a factor 10 above GIANO's one: similar to 0.1 K. The modeling and simulations carried on at NAHUAL's conceptual design are presented in this paper.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 50 条
  • [1] An ultra-stable cryostat for the detectors of ESPRESSO
    Lizon, Jean Louis
    Iwert, Olaf
    Deiries, Sebastian
    Dekker, Hans
    Hinterschuster, Renate
    Manescau, Antonio
    Megevand, Denis
    Mueller, Eric
    Pepe, Francesco Alfonso
    Riva, Marco
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VI, 2016, 9908
  • [2] Ultra-stable dry cryostat for variable temperature break junction
    Gemma, Andrea
    Zulji, Anel
    Hurtak, Femke
    Fatayer, Shadi
    Kittel, Achim
    Calame, Michel
    Gotsmann, Bernd
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (12):
  • [3] The ultra-stable microwave based on ultra-stable laser
    Dai, Shaoyang
    Fang, Fang
    Cao, Shiying
    Liu, Nianfeng
    Li, Tianchu
    AOPC 2017: LASER COMPONENTS, SYSTEMS, AND APPLICATIONS, 2017, 10457
  • [4] The ultra-stable microwave based on ultra-stable laser
    Dai, Shaoyang
    Fang, Fang
    Cao, Shiying
    Liu, Kun
    Liu, Nianfeng
    Chen, Weiliang
    Li, Tianchu
    TENTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS, 2018, 10964
  • [5] Modeling and analysis of an ultra-stable subluminal laser
    Zhou, Zifan
    Yablon, Joshua
    Zhou, Minchuan
    Wang, Ye
    Heifetz, Alexander
    Shahriar, M. S.
    OPTICS COMMUNICATIONS, 2016, 358 : 6 - 19
  • [6] ULTRA-STABLE QUARTZ
    不详
    ELECTRONICS WORLD & WIRELESS WORLD, 1991, 97 (1665): : 547 - 547
  • [7] Integrated modeling of large, segmented telescopes with ultra-stable wavefronts
    Coyle, Laura E.
    Knight, J. Scott
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2022, 12180
  • [8] Compact Ultra-Stable Laser
    Didier, A.
    Millo, J.
    Marechal, B.
    Rocher, C.
    Lacroute, C.
    Ouisse, M.
    Rubiola, E.
    Kersale, Y.
    2017 JOINT CONFERENCE OF THE EUROPEAN FREQUENCY AND TIME FORUM AND IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM (EFTF/IFC), 2017, : 775 - 776
  • [9] MAGMETERS WITH ULTRA-STABLE ZERO
    FATH, JP
    AUSTRALIAN JOURNAL OF INSTRUMENTATION & CONTROL, 1976, 32 (03): : 49 - 53
  • [10] VOLTAGE DIVIDER IS ULTRA-STABLE
    KUZDRALL, JA
    ELECTRONIC DESIGN, 1990, 38 (04) : 139 - 139