Nuclear respiratory factor 1 protects H9C2 cells against hypoxia-induced apoptosis via the death receptor pathway and mitochondrial pathway

被引:12
|
作者
Li, Hui [1 ]
Niu, Nan [1 ]
Yang, Jihui [1 ]
Dong, Fei [1 ]
Zhang, Tingrui [1 ]
Li, Shasha [1 ]
Zhao, Wei [1 ]
机构
[1] Ningxia Med Univ, Coll Basic Med, 1160 Shengli St, Yinchuan 750004, Ningxia, Peoples R China
关键词
apoptosis pathway; cell viability; hypoxia; nuclear respiratory factor 1; reactive oxygen species; FACTOR-I; GENE-EXPRESSION; NRF-1; TRANSCRIPTION; THERAPIES; INJURY;
D O I
10.1002/cbin.11619
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.
引用
收藏
页码:1784 / 1796
页数:13
相关论文
共 50 条
  • [1] Nuclear respiratory factor-1 promotes CFLAR transcription in H9C2 cardiomyocytes, protecting them against hypoxia-induced apoptosis
    Hui Li
    Yunxia Ma
    Junliang Li
    Siyu Hou
    Hui Song
    Yazhou Zhu
    Wei Zhao
    Molecular Biology Reports, 2025, 52 (1)
  • [2] Genistein Protects H9c2 Cardiomyocytes against Chemical Hypoxia-Induced Injury via Inhibition of Apoptosis
    Shi, Ya-Ning
    Zhang, Xiu-Qin
    Hu, Zhe-Yu
    Zhang, Chan-Juan
    Liao, Duan-Fang
    Huang, Hong-Lin
    Qin, Li
    PHARMACOLOGY, 2019, 103 (5-6) : 282 - 290
  • [3] Effects of nuclear respiratory factor-1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells
    Niu, Nan
    Li, Zihua
    Zhu, Mingxing
    Sun, Hongli
    Yang, Jihui
    Xu, Shimei
    Zhao, Wei
    Song, Rong
    MOLECULAR MEDICINE REPORTS, 2019, 19 (03) : 2153 - 2163
  • [4] Hydrogen sulphide protects H9c2 cells against chemical hypoxia-induced injury
    Chen, Si-Lin
    Yang, Chun-Tao
    Yang, Zhan-Li
    Guo, Rui-Xian
    Meng, Jin-Lan
    Cui, Yu
    Lan, Ai-Ping
    Chen, Pei-Xi
    Feng, Jian-Qiang
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2010, 37 (03): : 316 - 321
  • [5] Effect of Allicin against Ischemia/Hypoxia-Induced H9c2 Myoblast Apoptosis via eNOS/NO Pathway-Mediated Antioxidant Activity
    Ma, Lina
    Chen, Shangke
    Li, Shaochun
    Deng, Lijuan
    Li, Yikui
    Li, Hao
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [6] Naringin protects against anoxia/reoxygenation-induced apoptosis in H9c2 cells via the Nrf2 signaling pathway
    Chen, R. C.
    Sun, G. B.
    Wang, J.
    Zhang, H. J.
    Sun, X. B.
    FOOD & FUNCTION, 2015, 6 (04) : 1331 - 1344
  • [7] Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1 through a death receptor pathway and a mitochondrial pathway
    Yin, Jun
    Ni, Bing
    Liao, Wei-Gong
    Gao, Yu-Qi
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (02) : 1146 - 1155
  • [8] ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells
    Ekhterae, D
    Lin, ZW
    Lundberg, MS
    Crow, MT
    Brosius, FC
    Núñez, G
    CIRCULATION RESEARCH, 1999, 85 (12) : E70 - E77
  • [9] Overexpression of Exosomal Cardioprotective miRNAs Mitigates Hypoxia-Induced H9c2 Cells Apoptosis
    Zhang, Jinwei
    Ma, Jideng
    Long, Keren
    Qiu, Wanling
    Wang, Yujie
    Hu, Zihui
    Liu, Can
    Luo, Yi
    Jiang, Anan
    Jin, Long
    Tang, Qianzi
    Wang, Xun
    Li, Xuewei
    Li, Mingzhou
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (04):
  • [10] SIRT4 Prevents Hypoxia-Induced Apoptosis in H9c2 Cardiomyoblast Cells
    Liu, Ban
    Che, Wenliang
    Xue, Jinsong
    Zheng, Changzhu
    Tang, Kai
    Zhang, Jingying
    Wen, Jing
    Xu, Yawei
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2013, 32 (03) : 655 - 662