Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China

被引:113
作者
Huang, Lei [1 ,2 ]
Zhang, Can [1 ]
Bi, Jun [1 ]
机构
[1] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Xianlin Campus,Box 624,163 Xianlin Ave, Nanjing 210023, Jiangsu, Peoples R China
[2] Columbia Univ, Lamont Doherty Earth Observ, POB 1000,61 Rt 9W, Palisades, NY 10964 USA
基金
中国国家自然科学基金;
关键词
Ambient pollution; Land use regression; Simulation; Air quality monitoring networks; Spatial analysis; FINE PARTICULATE MATTER; AIR-POLLUTION EXPOSURE; YANGTZE-RIVER DELTA; ULTRAFINE PARTICLES; GLOBAL BURDEN; SPATIAL VARIATION; NITROGEN-DIOXIDE; HIGH-DENSITY; HEALTH; PM10;
D O I
10.1016/j.envres.2017.07.010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ambient air pollution has been a global problem, especially in China. Comparing with other methods, Land Use Regression (LUR) models can obtain air pollutant concentration distribution at finer scale without the air pollution source data based on a few monitoring sites and predictors. However, limited LUR studies have been conducted on the basis of regular monitoring networks. Thus, we explored the applicability of conducting LUR models for four key air pollutants: PM2.5, SO2, NO2 and O-3, on the basis of national monitoring networks which have good representation of areas with different characteristics in Nanjing, China. Fifty-nine potential predictor variables were considered, including land use type, population density, traffic emission, industrial emission, geographical coordinates, meteorology and topography. LUR models of these four air pollutants were with good explained variance for four key air pollutants. Adjusted explained variance of the LUR models was highest for NO2 (87%), followed by SO2 (83%), and was lower for PM2.5 (72%) and 03 (65%). Annual average distributions of pollutants in 2013 were obtained based on predicted values, which revealed that O-3 in Nanjing was more heavily impacted by regional influences. This study would not only contribute to the wider use of LUR studies in China but also offer important reference for the application of regular monitoring network with high representativeness in LUR studies. These results would also support for air epidemiological studies in the future.
引用
收藏
页码:542 / 552
页数:11
相关论文
共 61 条
[1]   A Land Use Regression Model for Ultrafine Particles in Vancouver, Canada [J].
Abernethy, Rebecca C. ;
Allen, Ryan W. ;
McKendry, Ian G. ;
Brauer, Michael .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (10) :5217-5225
[2]   Cardiovascular disease and air pollutants: Evaluating and improving epidemiological data implicating traffic exposure [J].
Adar, S. D. ;
Kaufman, J. D. .
INHALATION TOXICOLOGY, 2007, 19 :135-149
[3]   An Estimate of the Global Burden of Anthropogenic Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling [J].
Anenberg, Susan C. ;
Horowitz, Larry W. ;
Tong, Daniel Q. ;
West, J. Jason .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (09) :1189-1195
[4]  
[Anonymous], 2007, J GEOPHYS RES ATMOS
[5]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[6]   Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation [J].
Bravo, Mercedes A. ;
Fuentes, Montserrat ;
Zhang, Yang ;
Burr, Michael J. ;
Bell, Michelle L. .
ENVIRONMENTAL RESEARCH, 2012, 116 :1-10
[7]   The role of GIS: Coping with space (and time) in air pollution exposure assessment [J].
Briggs, D .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2005, 68 (13-14) :1243-1261
[8]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[9]   Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy [J].
Cattani, Giorgio ;
Gaeta, Alessandra ;
di Bucchianico, Alessandro Di Menno ;
De Santis, Antonella ;
Gaddi, Raffaela ;
Cusano, Mariacarmela ;
Ancona, Carla ;
Badaloni, Chiara ;
Forastiere, Francesco ;
Gariazzo, Claudio ;
Sozzi, Roberto ;
Inglessis, Marco ;
Silibello, Camillo ;
Salvatori, Elisabetta ;
Manes, Fausto ;
Cesaroni, Giulia .
ATMOSPHERIC ENVIRONMENT, 2017, 156 :52-60
[10]   Combined use of land use regression and BenMAP for estimating public health benefits of reducing PM2.5 in Tianjin, China [J].
Chen, Li ;
Shi, Mengshuang ;
Li, Suhuan ;
Bai, Zhipeng ;
Wang, Zhongliang .
ATMOSPHERIC ENVIRONMENT, 2017, 152 :16-23