Similarity-based methods for word sense disambiguation
被引:57
作者:
论文数: 引用数:
h-index:
机构:
Dagan, I
[1
]
Lee, L
论文数: 0引用数: 0
h-index: 0
机构:
Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, IsraelBar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
Lee, L
[1
]
Pereira, F
论文数: 0引用数: 0
h-index: 0
机构:
Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, IsraelBar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
Pereira, F
[1
]
机构:
[1] Bar Ilan Univ, Dept Math & Comp Sci, IL-52900 Ramat Gan, Israel
来源:
35TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 8TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE
|
1997年
关键词:
D O I:
10.3115/979617.979625
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency. The similarity-based methods perforin up to 40% better on this particular task. We also conclude that events that occur only once in the training set have major impact on similarity-based estimates.