Norm and numerical radius inequalities for sum of operators

被引:6
作者
Vakili, Ali Zand [1 ]
Farokhinia, Ali [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Shiraz Branch, Shiraz, Iran
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2021年 / 14卷 / 04期
关键词
Bounded linear operators; Numerical radius; Operator norm; Inequality; LINEAR-OPERATORS; BOUNDS;
D O I
10.1007/s40574-021-00289-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present several numerical radius and norm inequalities for sum of Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator T is an element of B(H), we prove that omega(2) (T) <= 1/2 omega(T-2) + 1/2 root 2 omega(vertical bar T vertical bar(2) + i vertical bar T*vertical bar(2)).
引用
收藏
页码:647 / 657
页数:11
相关论文
共 20 条
  • [1] [Anonymous], 2003, J INEQUAL PURE APPL
  • [2] Weak majorization inequalities and convex functions
    Aujla, JS
    Silva, FC
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 217 - 233
  • [3] BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM
    Bag, Santanu
    Bhunia, Pintu
    Paul, Kallol
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 991 - 1004
  • [4] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
  • [5] SHARP INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS AND OPERATOR MATRICES
    Bhunia, Pintu
    Paul, Kallol
    Nayak, Raj Kumar
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01): : 167 - 183
  • [6] Numerical radius inequalities and its applications in estimation of zeros of polynomials
    Bhunia, Pintu
    Bag, Santanu
    Paul, Kallol
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 573 : 166 - 177
  • [7] BUZANO M. L., 1974, Rend Sem Mat Univ e Politech Torino, V31, P405
  • [8] Dragomir SS, 2008, TAMKANG J MATH, V39, P1
  • [9] Dragomir S.S., 2009, SARAJEVO J MATH, V5, P269
  • [10] Dragomir SS., 2018, Mathematica, V60, P149, DOI [10.24193/mathcluj.2018.2.06, DOI 10.24193/MATHCLUJ.2018.2.06]