Numerical solution of fractional advection-diffusion equation with a nonlinear source term

被引:62
|
作者
Parvizi, M. [1 ]
Eslahchi, M. R. [1 ]
Dehghan, Mehdi [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Fractional advection-diffusion equation; Riemann-Liouville derivative; Jacobi polynomials; Operational matrix; Collocation method; Stability analysis and convergence; FINITE-DIFFERENCE APPROXIMATIONS; FUNDAMENTAL SOLUTION; ORDER;
D O I
10.1007/s11075-014-9863-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we use the Jacobi collocation method for solving a special kind of the fractional advection-diffusion equation with a nonlinear source term. This equation is the classical advection-diffusion equation in which the space derivatives are replaced by the Riemann-Liouville derivatives of order 0 < sigma a parts per thousand currency sign 1 and 1 < mu a parts per thousand currency sign 2. Also the stability and convergence of the presented method are shown for this equation. Finally some numerical examples are solved using the presented method.
引用
收藏
页码:601 / 629
页数:29
相关论文
共 50 条
  • [1] Numerical solution of fractional advection-diffusion equation with a nonlinear source term
    M. Parvizi
    M. R. Eslahchi
    Mehdi Dehghan
    Numerical Algorithms, 2015, 68 : 601 - 629
  • [2] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [3] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [4] Numerical solution of an advection-diffusion equation
    Solución numérica de una ecuación del tipo advección-difusión
    1600, Centro de Informacion Tecnologica (25):
  • [5] Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 : 93 - 102
  • [6] An implicit numerical method for the solution of the fractional advection-diffusion equation with delay
    Pimenov, V. G.
    Hendy, A. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (02): : 218 - 226
  • [7] Exact and numerical solutions of time-fractional advection-diffusion equation with a nonlinear source term by means of the Lie symmetries
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    NONLINEAR DYNAMICS, 2018, 92 (02) : 543 - 555
  • [8] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [9] Numerical Method for Fractional Advection-Diffusion Equation with Heredity
    Pimenov V.G.
    Journal of Mathematical Sciences, 2018, 230 (5) : 737 - 741
  • [10] An upwind numerical solution of nonlinear advection-diffusion problems with a moving heat source
    N. Al-Khalidy
    Heat and Mass Transfer, 1998, 34 : 287 - 293