Multiple periodic solutions of scalar second order differential equations

被引:15
作者
Fonda, Alessandro [1 ]
Ghirardelli, Luca [2 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
[2] Scuola Int Super Studi Avanzati, SISSA, I-34151 Trieste, Italy
关键词
Multiplicity of periodic solutions; Nonlinear boundary value problems; Poincare-Birkhoff Theorem;
D O I
10.1016/j.na.2010.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove multiplicity of periodic solutions for a scalar second order differential equation with an asymmetric nonlinearity, thus generalizing previous results by Lazer and McKenna (1987)[1] and Del Pino, Manasevich and Murua (1992) [2]. The main improvement lies in the fact that we do not require any differentiability condition on the nonlinearity. The proof is based on the use of the Poincare-Birkhoff Fixed Point Theorem. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4005 / 4015
页数:11
相关论文
共 8 条
[1]   Half-eigenvalues of periodic Sturm-Liouville problems [J].
Binding, PA ;
Rynne, BP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :280-305
[2]   ON THE NUMBER OF 2-PI PERIODIC-SOLUTIONS FOR U'' + G(U) = S(1+H(T)) USING THE POINCARE-BIRKHOFF THEOREM [J].
DELPINO, MA ;
MANASEVICH, RF ;
MURUA, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (02) :240-258
[3]   A GENERALIZATION OF THE POINCARE-BIRKHOFF THEOREM [J].
DING, WY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (02) :341-346
[5]  
LAZER AC, 1987, ANN I H POINCARE-AN, V4, P243
[6]   Multiplicity results for periodic solutions of second order ODEs with asymmetric nonlinearities [J].
Rebelo, C ;
Zanolin, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (06) :2349-2389
[7]  
Rebelo C., 1997, DISCRETE CONTIN DYN, V3, P25, DOI DOI 10.3934/DCDS.1997.3.25
[8]  
Zanini C, 2005, DYNAM CONT DIS SER A, V12, P343