Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage

被引:63
|
作者
Modi, Nishant [1 ]
Wang, Xiaolin [1 ]
Negnevitsky, Michael [1 ]
机构
[1] Univ Tasmania, Sch Engn, Hobart, Tas 7001, Australia
关键词
Phase Change Material; Eccentricity; Shell and Tube Heat Exchanger; Latent Heat Thermal Energy Storage; Rotation; PHASE-CHANGE; PARAFFIN WAX; PERFORMANCE; UNIT; OPTIMIZATION; CONVECTION; PARAMETERS; BEHAVIOR; ANGLE; PCMS;
D O I
10.1016/j.applthermaleng.2022.118812
中图分类号
O414.1 [热力学];
学科分类号
摘要
Research showed that bottom eccentricity improved the melting performance in the horizontal shell-and-tube latent heat thermal energy storage (LHTES) system. However, it largely reduced the solidification performance. To solve this problem, this study investigated the effects of different eccentric positions of the inner heat transfer fluid (HTF) tube on the thermal performance of a horizontal shell-and-tube LHTES system during the melting and solidification processes. A novel technique with the intermittent rotation of the LHTES device was proposed to take the advantage of eccentric tube configurations for enhancing both the melting process during charging and the solidification process during discharging. Numerical simulations were conducted and validated in the FLUENT application of ANSYS software by utilizing the enthalpy-porosity method. Liquid fraction, average temperature, energy storage rate, and velocity distribution were used to evaluate the LHTES system thermal performance. Results showed that the bottom eccentricity significantly improved the melting process, however, it slowed down the solidification process. But the further study found that the top eccentricity could enhance the solidification process. Based on the average energy storage rate, the optimum bottom eccentricity laid between 0.60 and 0.75 for the charging process, which improved the melting rate by 64-74%. However, the optimal top eccentricity was between -0.15 and -0.30 for the discharging process. The proposed novel rotational technique well adapted the bottom eccentricity to improve the melting process during charging and the top eccentricity to enhance the solidification process during discharging. It was found that an optimal eccentricity of 0.30 could well tradeoff between the bottom eccentricity for charging and top eccentricity for discharging process in the proposed approach. Both the HTF cooling temperature and shell-to-tube radius ratio did not show a significant impact on the optimal eccentricity of the LHTES system.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system
    Modi, Nishant
    Wang, Xiaolin
    Negnevitsky, Michael
    Cao, Feng
    SOLAR ENERGY, 2021, 230 : 333 - 344
  • [2] Melting characteristics of concentric and eccentric inner elliptic tube in double tube latent heat energy storage unit
    Alnakeeb, Mohamed A.
    Galal, Walaa M.
    Youssef, M. Elsayed
    Sorour, Medhat M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 73 : 443 - 460
  • [3] Effect of natural convection on melting performance of eccentric horizontal shell and tube latent heat storage unit
    Cao, Xiaoling
    Yuan, Yanping
    Xiang, Bo
    Haghighat, Fariborz
    SUSTAINABLE CITIES AND SOCIETY, 2018, 38 : 571 - 581
  • [4] Investigation and optimization of solidification performance of a triplex-tube latent heat thermal energy storage system by rotational mechanism
    Huang, Xinyu
    Li, Fangfei
    Xiao, Tian
    Guo, Junfei
    Wang, Fan
    Gao, Xinyu
    Yang, Xiaohu
    He, Ya-Ling
    APPLIED ENERGY, 2023, 331
  • [5] INVESTIGATION OF MELTING HEAT TRANSFER CHARACTERISTICS OF LATENT HEAT THERMAL STORAGE UNIT WITH FINNED TUBE
    Hamdani
    Irwansyah
    Mahlia, T. M. I.
    INTERNATIONAL CONFERENCE ON ADVANCES SCIENCE AND CONTEMPORARY ENGINEERING 2012, 2012, 50 : 122 - 128
  • [6] Experimental investigation of melting and solidification characteristics in a vertical shell and tube latent heat thermal energy storage system with novel directional flow annular fins
    Naik, Lakshmana
    Gumtapure, Veershetty
    Murthy, B. V. Rudra
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [7] Influence of Fin Parameters on Melting and Solidification Characteristics of a Conical Shell and Tube Latent Heat Storage Unit
    Kalapala, Lokesh
    Devanuri, Jaya Krishna
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (02):
  • [8] Reproducibility of solidification and melting processes in a latent heat thermal storage tank
    Bosholm, F.
    Lopez-Navarro, A.
    Gamarra, M.
    Corberan, J. M.
    Paya, J.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2016, 62 : 85 - 96
  • [9] Melting and solidification performance of latent heat thermal energy storage system under flip condition
    Li, Xueqiang
    Wang, Qihui
    Huang, Xinyu
    Yang, Xiaohu
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [10] State estimation concept for a nonlinear melting/solidification problem of a latent heat thermal energy storage
    Pernsteiner, Dominik
    Schirrer, Alexander
    Kasper, Lukas
    Hofmann, Rene
    Jakubek, Stefan
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 153