Newtonian law with memory

被引:64
作者
Baleanu, Dumitru [1 ,2 ]
Golmankhaneh, Alireza K. [3 ]
Golmankhaneh, Ali K. [3 ]
Nigmatullin, Raoul R. [4 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Magurele 76900, Romania
[3] Islamic Azad Univ, Oromiyeh Branch, Dept Phys, Oromiyeh, Iran
[4] Kazan VI Lenin State Univ, Dept Theoret Phys, Kazan 420008, Tatarstan, Russia
关键词
Fractional Newtonian mechanics; Fractional derivatives; Equations with memory; EULER-LAGRANGE EQUATIONS; HAMILTONIAN-FORMULATION; FRACTIONAL KINETICS; FORMALISM; MECHANICS; SYSTEMS;
D O I
10.1007/s11071-009-9581-1
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study we analyzed the Newtonian equation with memory. One physical model possessing memory effect is analyzed in detail. The fractional generalization of this model is investigated and the exact solutions within Caputo and Riemann-Liouville fractional derivatives are reported.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 42 条
[1]   A general finite element formulation for fractional variational problems [J].
Agrawal, Om P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :1-12
[2]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[3]   Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the caputo derivative [J].
Agrawal, Om P. .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1217-1237
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
[Anonymous], CHAOS
[6]  
[Anonymous], 1998, Fleches du Temps et Geometrie Fractale
[7]   On exact solutions of a class of fractional Euler-Lagrange equations [J].
Baleanu, Dumitru ;
Trujillo, Juan J. .
NONLINEAR DYNAMICS, 2008, 52 (04) :331-335
[8]   Fractional Hamiltonian analysis of higher order derivatives systems [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Tas, Kenan .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[9]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[10]   The Dual Action of Fractional Multi Time Hamilton Equations [J].
Baleanu, Dumitru ;
Golmankhaneh, Ali Khalili ;
Golmankhaneh, Alireza Khalili .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (09) :2558-2569