Achieving balanced intermixed and pure crystalline phases in PDI-based non-fullerene organic solar cells via selective solvent additives

被引:33
作者
Li, Mingguang [1 ,2 ]
Liu, Jiangang [1 ,2 ]
Cao, Xinxiu [1 ,2 ]
Zhou, Ke [1 ,2 ]
Zhao, Qiaoqiao [1 ,2 ]
Yu, Xinhong [1 ,2 ]
Xing, Rubo [1 ,2 ]
Han, Yanchun [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
HETEROJUNCTION PHOTOVOLTAIC CELLS; PERYLENE BISIMIDE DYES; MORPHOLOGY; PERFORMANCE; MISCIBILITY; SEPARATION; AGGREGATION; EFFICIENCY; SEMICONDUCTOR; DEVICES;
D O I
10.1039/c4cp04161e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, balanced intermixed and pure crystalline phases in N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI)-based non-fullerene organic solar cells (OSCs) were achieved via selective solvent additives (SAs). Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) and 7,7'-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole) (F-DTS) possessing different compatibilities with EP-PDI were selected as model systems to investigate the guideline of SAs selection for different non-fullerene-based systems. According to the solubility parameter difference (Delta delta) between EP-PDI and SAs, five different SAs were divided into two types: (I) strong intermolecular interactions with EP-PDI molecules (with Delta delta values less than 5 MPa1/2), (II) weak intermolecular interactions with EP-PDI molecules (with large Delta delta values). For PTB7: EP-PDI system with large and obvious phase separation, the introduction of type (II) SAs provided extra interactions with EP-PDI molecules, thus effectively reducing EP-PDI aggregate domains and increasing intermixed fractions. The incorporation of type (II) SAs resulted in a greater yield of dissociated polarons, and the final device efficiency increased from 0.02% to 1.65%. On the contrary, for finely mixed F-DTS: EP-PDI systems, type (I) SAs were considerably more effective because of the fact that the required pure crystalline phases were readily induced by the unfavorable interactions. The charge transport pathways optimized by type (I) SAs improved device efficiency from 0.18% to 2.82%. Hence, by processing selective SAs, the fraction of intermixed and pure crystalline phases for PDI-based non-fullerene OSCs can be well regulated; therefore, the final performance for both systems can be significantly improved.
引用
收藏
页码:26917 / 26928
页数:12
相关论文
共 43 条
[1]   Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI [J].
Balakrishnan, K ;
Datar, A ;
Oitker, R ;
Chen, H ;
Zuo, JM ;
Zang, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (30) :10496-10497
[2]   Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells [J].
Ballantyne, Amy M. ;
Ferenczi, Toby A. M. ;
Campoy-Quiles, Mariano ;
Clarke, Tracey M. ;
Maurano, Andrea ;
Wong, Kien Hon ;
Zhang, Weimin ;
Stingelin-Stutzmann, Natalie ;
Kim, Ji-Seon ;
Bradley, Donal D. C. ;
Durrant, James R. ;
McCulloch, Iain ;
Heeney, Martin ;
Nelson, Jenny ;
Tierney, Steve ;
Duffy, Warren ;
Mueller, Christian ;
Smith, Paul .
MACROMOLECULES, 2010, 43 (03) :1169-1174
[3]   Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors [J].
Bloking, Jason T. ;
Giovenzana, Tommaso ;
Higgs, Andrew T. ;
Ponec, Andrew J. ;
Hoke, Eric T. ;
Vandewal, Koen ;
Ko, Sangwon ;
Bao, Zhenan ;
Sellinger, Alan ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[4]   How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency [J].
Burke, Timothy M. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2014, 26 (12) :1923-1928
[5]   Recent Progress in Polymer Solar Cells: Manipulation of Polymer: Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells [J].
Chen, Li-Min ;
Hong, Ziruo ;
Li, Gang ;
Yang, Yang .
ADVANCED MATERIALS, 2009, 21 (14-15) :1434-1449
[6]   Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells [J].
Chen, Wei ;
Xu, Tao ;
He, Feng ;
Wang, Wei ;
Wang, Cheng ;
Strzalka, Joseph ;
Liu, Yun ;
Wen, Jianguo ;
Miller, Dean J. ;
Chen, Jihua ;
Hong, Kunlun ;
Yu, Luping ;
Darling, Seth B. .
NANO LETTERS, 2011, 11 (09) :3707-3713
[7]   Photoluminescence and conductivity of self-assembled π-π stacks of perylene bisimide dyes [J].
Chen, Zhijian ;
Stepanenko, Vladimir ;
Dehm, Volker ;
Prins, Paulette ;
Siebbeles, Laurens D. A. ;
Seibt, Joachim ;
Marquetand, Philipp ;
Engel, Volker ;
Wuerthner, Frank .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (02) :436-449
[8]   Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells [J].
Chiu, Mao-Yuan ;
Jeng, U-Ser ;
Su, Chiu-Hun ;
Liang, Keng S. ;
Wei, Kung-Hwa .
ADVANCED MATERIALS, 2008, 20 (13) :2573-+
[9]   Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells [J].
Collins, Brian A. ;
Li, Zhe ;
Tumbleston, John R. ;
Gann, Eliot ;
McNeill, Christopher R. ;
Ade, Harald .
ADVANCED ENERGY MATERIALS, 2013, 3 (01) :65-74
[10]   Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability [J].
Collins, Brian A. ;
Tumbleston, John R. ;
Ade, Harald .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (24) :3135-3145