Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease

被引:15
作者
Vilne, Baiba [1 ,2 ]
Kibilds, Juris [3 ]
Siksna, Inese [3 ]
Lazda, Ilva [3 ]
Valcina, Olga [3 ]
Krumina, Angelika [3 ,4 ]
机构
[1] Riga Stradins Univ, Bioinformat Lab, Riga, Latvia
[2] Stat & Machine Learning Tech Human Microbiome Stud, COST Act CA18131, Brussels, Belgium
[3] Anim Hlth & Environm BIOR, Inst Food Safety, Riga, Latvia
[4] Riga Stradins Univ, Dept Infectol & Dermatol, Riga, Latvia
关键词
machine learning; diet; gut microbiome; personalized nutrition; coronary artery disease; artificial intelligence; risk prediction; GENOME-WIDE ASSOCIATION; HEART-DISEASE; CARDIOVASCULAR-DISEASE; LOCI; HEALTH; NUTRITION; PREGNANCY; MEAT; RED;
D O I
10.3389/fmicb.2022.627892
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the "one-size-fits-all" approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.
引用
收藏
页数:13
相关论文
共 109 条
[61]   Clinical and Vitamin Response to a Short-Term Multi-Micronutrient Intervention in Brazilian Children and Teens: From Population Data to Interindividual Responses [J].
Mathias, Mariana Giaretta ;
Coelho-Landell, Carolina de Almeida ;
Scott-Boyer, Marie-Pier ;
Lacroix, Sebastien ;
Morine, Melissa J. ;
Salomao, Roberta Garcia ;
Donega Toffano, Roseli Borges ;
Ribeiro do Vale Almada, Maria Olimpia ;
Camarneiro, Joyce Moraes ;
Hillesheim, Elaine ;
de Barros, Tamiris Trevisan ;
Camelo-Junior, Jose Simon ;
Gimenez, Esther Campos ;
Redeuil, Karine ;
Goyon, Alexandre ;
Bertschy, Emmanuelle ;
Leveques, Antoine ;
Oberson, Jean-Marie ;
Gimenez, Catherine ;
Carayol, Jerome ;
Kussmann, Martin ;
Descombes, Patrick ;
Metairon, Slyviane ;
Draper, Colleen Fogarty ;
Conus, Nelly ;
Mottaz, Sara Colombo ;
Corsini, Giovanna Zambianchi ;
Brandao Myoshi, Stephanie Kazu ;
Muniz, Mariana Mendes ;
Hernandes, Livia Cristina ;
Venancio, Vinicius Paula ;
Greggi Antunes, Lusania Maria ;
da Silva, Rosana Queiroz ;
Laurito, Tais Fontellas ;
Rossi, Isabela Ribeiro ;
Ricci, Raquel ;
Jorge, Jessica Re ;
Faga, Mayara Leite ;
Gomes Quinhoneiro, Driele Cristina ;
Reche, Mariana Chinarelli ;
Sozza Silva, Paula Vitoria ;
Falquetti, Leticia Lima ;
Alves da Cunha, Thais Helena ;
Martins Deminice, Thalia Manfrin ;
Tambellini, Tamara Hamburguer ;
Arces de Souza, Gabriela Cristina ;
de Oliveira, Mariana Moraes ;
Nogueira-Pileggi, Vicky ;
Matsumoto, Marina Takemoto ;
Priami, Corrado .
MOLECULAR NUTRITION & FOOD RESEARCH, 2018, 62 (06)
[62]   Geographic Variation in Cardiovascular Procedure Use Among Medicare Fee-for-Service vs Medicare Advantage Beneficiaries [J].
Matlock, Daniel D. ;
Groeneveld, Peter W. ;
Sidney, Steve ;
Shetterly, Susan ;
Goodrich, Glenn ;
Glenn, Karen ;
Xu, Stan ;
Yang, Lin ;
Farmer, Steven A. ;
Reynolds, Kristi ;
Cassidy-Bushrow, Andrea E. ;
Lieu, Tracy ;
Boudreau, Denise M. ;
Greenlee, Robert T. ;
Tom, Jeffrey ;
Vupputuri, Suma ;
Adams, Kenneth F. ;
Smith, David H. ;
Gunter, Margaret J. ;
Go, Alan S. ;
Magid, David J. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 310 (02) :155-162
[63]   A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY (REPRINTED FROM BULLETIN OF MATHEMATICAL BIOPHYSICS, VOL 5, PG 115-133, 1943) [J].
MCCULLOCH, WS ;
PITTS, W .
BULLETIN OF MATHEMATICAL BIOLOGY, 1990, 52 (1-2) :99-115
[64]   Assessment of a Personalized Approach to Predicting Postprandial Glycemic Responses to Food Among Individuals Without Diabetes [J].
Mendes-Soares, Helena ;
Raveh-Sadka, Tali ;
Azulay, Shahar ;
Edens, Kim ;
Ben-Shlomo, Yatir ;
Cohen, Yossi ;
Ofek, Tal ;
Bachrach, Davidi ;
Stevens, Josh ;
Colibaseanu, Dorin ;
Segal, Lihi ;
Kashyap, Purna ;
Nelson, Heidi .
JAMA NETWORK OPEN, 2019, 2 (02)
[65]   Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus A Systematic Review and Meta-Analysis [J].
Micha, Renata ;
Wallace, Sarah K. ;
Mozaffarian, Dariush .
CIRCULATION, 2010, 121 (21) :2271-U52
[66]   Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk [J].
Miele, Luca ;
Giorgio, Valentina ;
Alberelli, Maria Adele ;
De Candia, Erica ;
Gasbarrini, Antonio ;
Grieco, Antonio .
CURRENT CARDIOLOGY REPORTS, 2015, 17 (12)
[67]   Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids [J].
Miyamoto, Junki ;
Igarashi, Miki ;
Watanabe, Keita ;
Karaki, Shin-ichiro ;
Mukouyama, Hiromi ;
Kishino, Shigenobu ;
Li, Xuan ;
Ichimura, Atsuhiko ;
Irie, Junichiro ;
Sugimoto, Yukihiko ;
Mizutani, Tetsuya ;
Sugawara, Tatsuya ;
Miki, Takashi ;
Ogawa, Jun ;
Drucker, Daniel J. ;
Arita, Makoto ;
Itoh, Hiroshi ;
Kimura, Ikuo .
NATURE COMMUNICATIONS, 2019, 10 (1)
[68]   A Comprehensive Review on Smart Decision Support Systems for Health Care [J].
Moreira, Mario W. L. ;
Rodrigues, Joel J. P. C. ;
Korotaev, Valery ;
Al-Muhtadi, Jalal ;
Kumar, Neeraj .
IEEE SYSTEMS JOURNAL, 2019, 13 (03) :3536-3545
[69]   Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions [J].
Moreno-Indias, Isabel ;
Lahti, Leo ;
Nedyalkova, Miroslava ;
Elbere, Ilze ;
Roshchupkin, Gennady ;
Adilovic, Muhamed ;
Aydemir, Onder ;
Bakir-Gungor, Burcu ;
Santa Pau, Enrique Carrillo-de ;
D'Elia, Domenica ;
Desai, Mahesh S. ;
Falquet, Laurent ;
Gundogdu, Aycan ;
Hron, Karel ;
Klammsteiner, Thomas ;
Lopes, Marta B. ;
Marcos-Zambrano, Laura Judith ;
Marques, Claudia ;
Mason, Michael ;
May, Patrick ;
Pasic, Lejla ;
Pio, Gianvito ;
Pongor, Sandor ;
Promponas, Vasilis J. ;
Przymus, Piotr ;
Saez-Rodriguez, Julio ;
Sampri, Alexia ;
Shigdel, Rajesh ;
Stres, Blaz ;
Suharoschi, Ramona ;
Truu, Jaak ;
Truica, Ciprian-Octavian ;
Vilne, Baiba ;
Vlachakis, Dimitrios ;
Yilmaz, Ercument ;
Zeller, Georg ;
Zomer, Aldert L. ;
Gomez-Cabrero, David ;
Claesson, Marcus J. .
FRONTIERS IN MICROBIOLOGY, 2021, 12
[70]   Cardiovascular Diseases in Central and Eastern Europe: A Call for More Surveillance and Evidence-Based Health Promotion [J].
Movsisyan, Narine K. ;
Vinciguerra, Manlio ;
Medina-Inojosa, Jose R. ;
Lopez-Jimenez, Francisco .
ANNALS OF GLOBAL HEALTH, 2020, 86 (01)