Could Artificial Intelligence/Machine Learning and Inclusion of Diet-Gut Microbiome Interactions Improve Disease Risk Prediction? Case Study: Coronary Artery Disease

被引:15
作者
Vilne, Baiba [1 ,2 ]
Kibilds, Juris [3 ]
Siksna, Inese [3 ]
Lazda, Ilva [3 ]
Valcina, Olga [3 ]
Krumina, Angelika [3 ,4 ]
机构
[1] Riga Stradins Univ, Bioinformat Lab, Riga, Latvia
[2] Stat & Machine Learning Tech Human Microbiome Stud, COST Act CA18131, Brussels, Belgium
[3] Anim Hlth & Environm BIOR, Inst Food Safety, Riga, Latvia
[4] Riga Stradins Univ, Dept Infectol & Dermatol, Riga, Latvia
关键词
machine learning; diet; gut microbiome; personalized nutrition; coronary artery disease; artificial intelligence; risk prediction; GENOME-WIDE ASSOCIATION; HEART-DISEASE; CARDIOVASCULAR-DISEASE; LOCI; HEALTH; NUTRITION; PREGNANCY; MEAT; RED;
D O I
10.3389/fmicb.2022.627892
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Coronary artery disease (CAD) is the most common cardiovascular disease (CVD) and the main leading cause of morbidity and mortality worldwide, posing a huge socio-economic burden to the society and health systems. Therefore, timely and precise identification of people at high risk of CAD is urgently required. Most current CAD risk prediction approaches are based on a small number of traditional risk factors (age, sex, diabetes, LDL and HDL cholesterol, smoking, systolic blood pressure) and are incompletely predictive across all patient groups, as CAD is a multi-factorial disease with complex etiology, considered to be driven by both genetic, as well as numerous environmental/lifestyle factors. Diet is one of the modifiable factors for improving lifestyle and disease prevention. However, the current rise in obesity, type 2 diabetes (T2D) and CVD/CAD indicates that the "one-size-fits-all" approach may not be efficient, due to significant variation in inter-individual responses. Recently, the gut microbiome has emerged as a potential and previously under-explored contributor to these variations. Hence, efficient integration of dietary and gut microbiome information alongside with genetic variations and clinical data holds a great promise to improve CAD risk prediction. Nevertheless, the highly complex nature of meals combined with the huge inter-individual variability of the gut microbiome poses several Big Data analytics challenges in modeling diet-gut microbiota interactions and integrating these within CAD risk prediction approaches for the development of personalized decision support systems (DSS). In this regard, the recent re-emergence of Artificial Intelligence (AI) / Machine Learning (ML) is opening intriguing perspectives, as these approaches are able to capture large and complex matrices of data, incorporating their interactions and identifying both linear and non-linear relationships. In this Mini-Review, we consider (1) the most used AI/ML approaches and their different use cases for CAD risk prediction (2) modeling of the content, choice and impact of dietary factors on CAD risk; (3) classification of individuals by their gut microbiome composition into CAD cases vs. controls and (4) modeling of the diet-gut microbiome interactions and their impact on CAD risk. Finally, we provide an outlook for putting it all together for improved CAD risk predictions.
引用
收藏
页数:13
相关论文
共 109 条
[101]   Integrating Genes Affecting Coronary Artery Disease in Functional Networks by Multi-OMICs Approach [J].
Vilne, Baiba ;
Schunkert, Heribert .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2018, 5
[102]   Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation [J].
Vilne, Baiba ;
Skogsberg, Josefin ;
Asl, Hassan Foroughi ;
Talukdar, Husain Ahammad ;
Kessler, Thorsten ;
Bjoerkegren, Johan L. M. ;
Schunkert, Heribert .
ATHEROSCLEROSIS, 2017, 267 :39-48
[103]   Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease [J].
Webb, Thomas R. ;
Erdmann, Jeanette ;
Stirrups, Kathleen E. ;
Stitziel, Nathan O. ;
Masca, Nicholas G. D. ;
Jansen, Henning ;
Kanoni, Stavroula ;
Nelson, Christopher P. ;
Ferrario, Paola G. ;
Koenig, Inke R. ;
Eicher, John D. ;
Johnson, Andrew D. ;
Hamby, Stephen E. ;
Betsholtz, Christer ;
Ruusalepp, Arno ;
Franzen, Oscar ;
Schadt, Eric E. ;
Bjoerkegren, Johan L. M. ;
Weeke, Peter E. ;
Auer, Paul L. ;
Schick, Ursula M. ;
Lu, Yingchang ;
Zhang, He ;
Dube, Marie-Pierre ;
Goel, Anuj ;
Farrall, Martin ;
Peloso, Gina M. ;
Won, Hong-Hee ;
Do, Ron ;
van Iperen, Erik ;
Kruppa, Jochen ;
Mahajan, Anubha ;
Scott, Robert A. ;
Willenborg, Christina ;
Braund, Peter S. ;
van Capelleveen, Julian C. ;
Doney, Alex S. F. ;
Donnelly, Louise A. ;
Asselta, Rosanna ;
Merlini, Pier A. ;
Duga, Stefano ;
Marziliano, Nicola ;
Denny, Josh C. ;
Shaffer, Christian ;
El-Mokhtari, Nour Eddine ;
Franke, Andre ;
Heilmann, Stefanie ;
Hengstenberg, Christian ;
Hoffmann, Per ;
Holmen, Oddgeir L. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2017, 69 (07) :823-836
[104]  
Weber I, 2016, BIOCOMPUT-PAC SYM, P540
[105]   Risk Prediction of Cardiovascular Events by Exploration of Molecular Data with Explainable Artificial Intelligence [J].
Westerlund, Annie M. ;
Hawe, Johann S. ;
Heinig, Matthias ;
Schunkert, Heribert .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
[106]   Prediction of coronary heart disease using risk factor categories [J].
Wilson, PWF ;
D'Agostino, RB ;
Levy, D ;
Belanger, AM ;
Silbershatz, H ;
Kannel, WB .
CIRCULATION, 1998, 97 (18) :1837-1847
[107]   Personalized Nutrition by Prediction of Glycemic Responses [J].
Zeevi, David ;
Korem, Tal ;
Zmora, Niv ;
Israeli, David ;
Rothschild, Daphna ;
Weinberger, Adina ;
Ben-Yacov, Orly ;
Lador, Dar ;
Avnit-Sagi, Tali ;
Lotan-Pompan, Maya ;
Suez, Jotham ;
Mahdi, Jemal Ali ;
Matot, Elad ;
Malka, Gal ;
Kosower, Noa ;
Rein, Michal ;
Zilberman-Schapira, Gili ;
Dohnalova, Lenka ;
Pevsner-Fischer, Meirav ;
Bikovsky, Rony ;
Halpern, Zamir ;
Elinav, Eran ;
Segal, Eran .
CELL, 2015, 163 (05) :1079-1094
[108]   A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis [J].
Zhao, Zheng ;
Yang, Yang ;
Zeng, Yong ;
He, Mei .
LAB ON A CHIP, 2016, 16 (03) :489-496
[109]   Dysbiosis signatures of gut microbiota in coronary artery disease [J].
Zhu, Qi ;
Gao, Renyuan ;
Zhang, Yi ;
Pan, Dengdeng ;
Zhu, Yefei ;
Zhang, Xiaohui ;
Yang, Rong ;
Jiang, Rong ;
Xu, Yawei ;
Qin, Huanlong .
PHYSIOLOGICAL GENOMICS, 2018, 50 (10) :893-903