Covariance Features Improve Low-Resource Reservoir Computing Performance in Multivariate Time Series Classification

被引:0
作者
Lawrie, Sofia [1 ]
Moreno-Bote, Ruben [1 ,2 ]
Gilson, Matthieu [1 ,3 ]
机构
[1] Univ Pompeu Fabra, Ctr Brain & Cognit, Dept Informat & Commun Technol, Barcelona, Spain
[2] Univ Pompeu Fabra, Serra Hunter Fellow Programme, Barcelona, Spain
[3] Julich Res Ctr, Inst Neurosci & Med INM 6, Inst Adv Simulat IAS 6, JARA Inst Brain Struct Funct Relationships INM 10, Julich, Germany
来源
COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021) | 2022年 / 1420卷
关键词
Time series classification; Reservoir computing; Bio-inspired computation; Covariances; ECHO STATE NETWORK; WORD RECOGNITION; MATRICES;
D O I
10.1007/978-981-16-9573-5_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological systems exhibit tremendous performance and flexibility in learning for a broad diversity of inputs, which are in general time series. Inspired by their biological counterpart, artificial neural networks used in machine learning for classification aim to extract activity patterns within input signals to transform them into stereotypical output patterns that represent categories. For the vast majority, they rely on fixed target values in output to represent probabilities or implement winner-take-all decisions, which correspond in the case of time series to first-order statistics. In other words, the basis for such classification of time series is the transformation of input high-order statistics into output first-order statistics. However, the transformation of input statistics to second- or higher-order statistics has not been much explored yet. Here, we consider a computational scheme based on a reservoir that maps information engrained in input multivariate time series statistics to second-order statistics of its own activity, before being fed to a usual classifier (logistic regression). We compare this covariance decoding with the "classical" mean decoding applied to the reservoir for classification with both synthetic and real datasets of multivariate time series. We show that covariance decoding can extract a broader diversity of second-order statistics from the input signals, yielding higher performance with smaller resources (i.e., reservoir size). Our results pave the way for the characterization of elaborate input-output mappings between statistical orders to efficiently represent and process input signals with complex spatio-temporal structures.
引用
收藏
页码:587 / 601
页数:15
相关论文
共 46 条
[1]  
Aceituno PV, 2020, ISCIENCE, V23, DOI 10.1016/j.isci.2020.101440
[2]   A Roadmap for Reaching the Potential of Brain-Derived Computing [J].
Aimone, James B. .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
[3]  
Alalshekmubarak Abdulrahman, 2014, Artificial Neural Networks and Machine Learning - ICANN 2014. 24th International Conference on Artificial Neural Networks. Proceedings: LNCS 8681, P225, DOI 10.1007/978-3-319-11179-7_29
[4]  
[Anonymous], 2010, Adv. Neural Inform. Process. Syst.
[5]   Role of non-linear data processing on speech recognition task in the framework of reservoir computing [J].
Araujo, Flavio Abreu ;
Riou, Mathieu ;
Torrejon, Jacob ;
Tsunegi, Sumito ;
Querlioz, Damien ;
Yakushiji, Kay ;
Fukushima, Akio ;
Kubota, Hitoshi ;
Yuasa, Shinji ;
Stiles, Mark D. ;
Grollier, Julie .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Time Series Classification in Reservoir- and Model-Space [J].
Aswolinskiy, Witali ;
Reinhart, Rene Felix ;
Steil, Jochen .
NEURAL PROCESSING LETTERS, 2018, 48 (02) :789-809
[7]   Classification of covariance matrices using a Riemannian-based kernel for BCI applications [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
NEUROCOMPUTING, 2013, 112 :172-178
[8]  
Bishop C.M., 2006, PATTERN RECOGNITION, DOI [DOI 10.18637/JSS.V017.B05, 10.1117/1.2819119]
[9]   Multi-scale Attention Convolutional Neural Network for time series classification [J].
Chen, Wei ;
Shi, Ke .
NEURAL NETWORKS, 2021, 136 (136) :126-140
[10]   Capacity of the covariance perceptron [J].
Dahmen, David ;
Gilson, Matthieu ;
Helias, Moritz .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (35)