Lower bounds for the first eigenvalue of the p-Laplace operator on compact manifolds with nonnegative Ricci curvature

被引:13
作者
Zhang, Huichun [1 ]
机构
[1] Zhongshan Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
D O I
10.1515/ADVGEOM.2007.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some lower bound estimates for the first eigenvalue of p-Laplace operators on compact Riemannian manifolds with quasi-positive (or nonnegative) Ricci curvature in terms of diameter of the manifolds. For compact manifolds with boundary, we consider the Dirichlet eigenvalue problem with some proper hypothesis.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 14 条
[1]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[2]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[3]   p-Laplace operator and diameter of manifolds [J].
Grosjean, JF .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 28 (03) :257-270
[4]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[5]   The ∞-eigenvalue problem [J].
Juutinen, P ;
Lindqvist, P ;
Manfredi, JJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (02) :89-105
[6]  
KAWAI S, 2000, NONLINEAR ANAL, V55, P33
[7]   Eigenvalue problems for the p-Laplacian [J].
Lê, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) :1057-1099
[8]  
LI P, 1980, GEOMETRY LAPLACE OPE, P205
[10]   First eigenvalue for the p-Laplace operator [J].
Matei, AM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (08) :1051-1068