An inequality between intrinsic and extrinsic scalar curvature invariants for codimension 2 embeddings

被引:12
作者
Dillen, F
Haesen, S
Petrovic-Torgasev, M
Verstraelen, L
机构
[1] Katholieke Univ Brussel, Grp Exact Sci, B-1081 Brussels, Belgium
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] Univ Kragujevac, Fac Sci, Dept Math, YU-34000 Kragujevac, Serbia
关键词
embedding; codimension; 2; normal curvature;
D O I
10.1016/j.geomphys.2004.02.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local and isometric embedding of an m-dimensional Lorentzian manifold in an (m + 2)-dimensional pseudo-Euclidean space. An inequality is proven between the basic curvature invariants, i.e. the intrinsic scalar curvature and the extrinsic mean and scalar normal curvature. The inequality becomes an equality if the two components of the second fundamental form have a specified form with respect to some orthonormal basis of the manifold. As an application we look at the space-times embedded in a six-dimensional pseudo-Euclidean space for which the equality holds. They turn out to be Petrov type D models filled with an anisotropic perfect fluid and containing a timelike two-surface of constant curvature. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 25 条
[1]   Isometric embedding of BPS branes in flat spaces with two times [J].
Andrianopoli, L ;
Derix, M ;
Gibbons, GW ;
Herdeiro, C ;
Santambrogio, A ;
Van Proeyen, A .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (09) :1875-1896
[2]  
[Anonymous], 1999, SPACE TIME MATTER MO
[3]  
[Anonymous], 2000, HDB DIFFERENTIAL GEO
[4]  
CHEN BY, 1999, GEOMETRY TOPOLOGY SU, V9, P80
[5]  
Chern SS, 1970, FUNCTIONAL ANAL RELA, P59, DOI [10.1007/978-3-642-48272-4_2, DOI 10.1007/978-3-642-25588-5_5, DOI 10.1007/978-3-642-48272-4_2]
[6]   The embedding of space-times in five dimensions with nondegenerate Ricci tensor [J].
Dahia, F ;
Romero, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (06) :3097-3106
[7]   The embedding of the space-time in five dimensions: An extension of the Campbell-Magaard theorem [J].
Dahia, F ;
Romero, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (11) :5804-5814
[8]  
De Smet P. J., 1999, ARCH MATH-BRNO, V35, P115
[9]  
Eisenhart Luther P, 1926, Riemannian Geometry
[10]   ISOMETRIC EMBEDDING OF RIEMANNIAN MANIFOLDS INTO EUCLIDEAN SPACES [J].
FRIEDMAN, A .
REVIEWS OF MODERN PHYSICS, 1965, 37 (01) :201-&