Quasinormal modes, the area spectrum, and black hole entropy

被引:329
作者
Dreyer, O [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada
关键词
FIELD-THEORY; FREQUENCIES; GEOMETRY;
D O I
10.1103/PhysRevLett.90.081301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The results of loop quantum gravity concerning geometric operators and black hole entropy are beset by an ambiguity labeled by the Immirzi parameter. We use a result from classical gravity concerning the quasinormal mode spectrum of a black hole to fix this parameter in a new way. As a result we arrive at the Bekenstein-Hawking expression of A/4l(P)(2) for the entropy of a black hole and in addition see an indication that the appropriate gauge group of quantum gravity is SO(3) and not its covering group SU(2).
引用
收藏
页码:4 / 081301
页数:4
相关论文
共 19 条
[1]  
ALEKSEEV A, HEPTH0004036
[2]   ON THE ASYMPTOTIC-DISTRIBUTION OF QUASI-NORMAL-MODE FREQUENCIES FOR SCHWARZSCHILD BLACK-HOLES [J].
ANDERSSON, N .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (06) :L61-L67
[3]  
[Anonymous], 1992, SAKHAROV MEMORIAL LE
[4]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[5]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[6]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[7]   Entropy from conformal field theory at Killing horizons [J].
Carlip, S .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (10) :3327-3348
[8]   Black hole entropy calculations based on symmetries [J].
Dreyer, O ;
Ghosh, A ;
Wisniewski, J .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (10) :1929-1938
[9]   Bohr's correspondence principle and the area spectrum of quantum black holes [J].
Hod, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4293-4296
[10]   Quantum gravity and Regge calculus [J].
Immirzi, G .
NUCLEAR PHYSICS B, 1997, :65-72