A 2-approximation algorithm for the vertex cover P4 problem in cubic graphs

被引:13
作者
Li, Yuchao [1 ]
Tu, Jianhua [1 ]
机构
[1] Beijing Univ Chem Technol, Sch Sci, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
05C85; 05C70; combinatorial optimization; cubic graph; approximation algorithm; sharp lower and upper bounds; vertex cover P-4 problem; APPROXIMATION ALGORITHM;
D O I
10.1080/00207160.2014.881476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset F of vertices of a graph G is called a vertex cover P-k set if every path of order k in G contains at least one vertex from F. Denote by psi(k)(G) the minimum cardinality of a vertex cover P-k set in G. The vertex cover P-k (VCPk) problem is to find a minimum vertex cover P-k set. It is easy to see that the VCP2 problem corresponds to the well-known vertex cover problem. In this paper, we restrict our attention to the VCP4 problem in cubic graphs. The paper proves that the VCP4 problem is NP-hard for cubic graphs. Further, we give sharp lower and upper bounds on psi(4)(G) for cubic graphs and propose a 2-approximation algorithm for the VCP4 problem in cubic graphs.
引用
收藏
页码:2103 / 2108
页数:6
相关论文
共 12 条
[1]  
Bresar B., 2001, DISCRET APPL MATH, V159, P1189
[2]   On the vertex k-path cover [J].
Bresar, Bostjan ;
Jakovac, Marko ;
Katrenic, Jan ;
Semanisin, Gabriel ;
Taranenko, Andrej .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) :1943-1949
[3]  
Chen J. E., 2012, 6 INT FRONT ALG WORK, P199
[4]   A generalization of Nemhauser and Trotter's local optimization theorem [J].
Fellows, Michael R. ;
Guo, Jiong ;
Moser, Hannes ;
Niedermeier, Rolf .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (06) :1141-1158
[5]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[6]   On the k-path vertex cover of some graph products [J].
Jakovac, Marko ;
Taranenko, Andrej .
DISCRETE MATHEMATICS, 2013, 313 (01) :94-100
[7]   On computing the minimum 3-path vertex cover and dissociation number of graphs [J].
Kardos, Frantisek ;
Katrenic, Jan ;
Schiermeyer, Ingo .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (50) :7009-7017
[8]   The vertex cover P3 problem in cubic graphs [J].
Tu, Jianhua ;
Yang, Fengmei .
INFORMATION PROCESSING LETTERS, 2013, 113 (13) :481-485
[9]   A primal-dual approximation algorithm for the vertex cover P3 problem [J].
Tu, Jianhua ;
Zhou, Wenli .
THEORETICAL COMPUTER SCIENCE, 2011, 412 (50) :7044-7048
[10]   A factor 2 approximation algorithm for the vertex cover P3 problem [J].
Tu, Jianhua ;
Zhou, Wenli .
INFORMATION PROCESSING LETTERS, 2011, 111 (14) :683-686