Boundedness of the Hardy and the Hardy-Littlewood operators in the spaces ReH1 and BMO

被引:15
作者
Golubov, BI
机构
关键词
D O I
10.1070/SM1997v188n07ABEH000246
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The boundedness of the Hardy operator H and the Hardy-Littlewood operator IB are established, respectively, in Re H-1 and the space BMO of functions of bounded mean oscillation on the real axis R. Here the space Re H-1 is isomorphic to the Hardy space of single-valued analytic functions F(z) in the upper half-plane; satisfying condition (0.3), the Hardy-Littlewood operator B is defined in R by equality (0.2), and the Hardy operator H is defined in R+ by equality (0.1) and its value Hf is continued to R- as an even (odd) function if the function f is even (odd). For an arbitrary function f one sets H(f) = H(f(+))+ H(f(-)), where f(+) is the even and f(-) is the odd component of f.
引用
收藏
页码:1041 / 1054
页数:14
相关论文
共 12 条
[1]  
[Anonymous], B AM MATH SOC, DOI 10.1090/S0002-9904-1944-08230-X
[2]  
Bari N.K., 1964, A Treatise on Trigonometric Series
[3]   WEAK-L INFINITY AND BMO [J].
BENNETT, C ;
DEVORE, RA ;
SHARPLEY, R .
ANNALS OF MATHEMATICS, 1981, 113 (03) :601-611
[4]  
DeFrancia J.L.R., 1985, WEIGHTED NORM INEQUA
[5]  
Garnett John B., 1984, Bounded Analytic Functions
[6]  
GOLUBOV BI, 1994, MAT SBORNIK, V185, P11
[7]  
Hardy G.H., 1929, Messenger Math., V58, P50
[8]  
Hardy GH., 1934, INEQUALITIES
[9]  
Krein, 1982, INTERPOLATION LINEAR
[10]  
STEIN E. M., 1971, INTRO FOURIER ANAL E, V32