General Ekeland's variational principle for set-valued mappings

被引:38
作者
Chen, GY [1 ]
Huang, XX
Hou, SH
机构
[1] Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Chongqing Normal Univ, Dept Math & Comp Sci, Chongqing, Peoples R China
[3] Hong Kong Polytech Univ, Dept Math Appl, Hong Kong, Hong Kong, Peoples R China
关键词
set-valued optimization; variational principle; Hausdorff maximality principle;
D O I
10.1023/A:1004663208905
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce the concept of approximate solutions for set-valued optimization problems. A sufficient condition for the existence of approximate solutions is obtained. A general Ekeland's variational principle for set-valued mappings in complete ordered metric spaces and complete metric spaces are derived. These results are generalizations of results for vector-valued functions in Refs. 1-4.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 9 条
[1]  
Aubin J.-P., 1984, Differential Inclusions
[2]   A unified approach to the existing three types of variational principles for vector valued functions [J].
Chen, GY ;
Huang, XX .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 48 (03) :349-357
[3]  
DENTCHEVA D, 1996, JOTA, V89, P329
[4]  
DUNFORD N, 1958, LINEAR OPERATIORS, V1
[5]   ON PROPERTY (Q) AND OTHER SEMICONTINUITY PROPERTIES OF MULTIFUNCTIONS [J].
HOU, SH .
PACIFIC JOURNAL OF MATHEMATICS, 1982, 103 (01) :39-56
[6]  
ISAC G, 1996, LECT NOTES EC MATH S, V432, P148
[7]   A NONCONVEX VECTOR MINIMIZATION PROBLEM [J].
NEMETH, AB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (07) :669-678
[8]  
Sawaragi Y., 1985, THEORY MULTIOBJECTIV
[9]  
Tammer C., 1992, Optimization, V25, P129, DOI 10.1080/02331939208843815