Early diagnosis of Alzheimer's disease on ADNI data using novel longitudinal score based on functional principal component analysis

被引:7
作者
Shi, Haolun [1 ]
Ma, Da [2 ]
Nie, Yunlong [1 ]
Beg, Mirza Faisal [2 ]
Pei, Jian [1 ,3 ]
Cao, Jiguo [1 ,3 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Simon Fraser Univ, Sch Engn Sci, Burnaby, BC, Canada
[3] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC, Canada
基金
美国国家卫生研究院; 加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
Alzheimer's disease; dementia of the Alzheimer type; early prediction; longitudinal; functional principal component analysis; Alzheimer's disease neuroimaging initiative; MILD COGNITIVE IMPAIRMENT; MRI; CONVERSION; ATROPHY; VALIDATION; REGRESSION; DEMENTIA; IMAGES;
D O I
10.1117/1.JMI.8.2.024502
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Methods: Alzheimer's disease (AD) is a worldwide prevalent age-related neurodegenerative disease with no available cure yet. Early prognosis is therefore crucial for planning proper clinical intervention. It is especially true for people diagnosed with mild cognitive impairment, to whom the prediction of whether and when the future disease onset would happen is particularly valuable. However, such prognostic prediction has been proven to be challenging, and previous studies have only achieved limited success. Approach: In this study, we seek to extract the principal component of the longitudinal disease progression trajectory in the early stage of AD, measured as the magnetic resonance imaging (MRI)-derived structural volume, to predict the onset of AD for mild cognitive impaired patients two years ahead. Results: Cross-validation results of LASSO regression using the longitudinal functional principal component (FPC) features show significant improved predictive power compared to training using the baseline volume 12 months before AD conversion [area under the receiver operating characteristic curve (AUC) of 0.802 versus 0.732] and 24 months before AD conversion (AUC of 0.816 versus 0.717). Conclusions: We present a framework using the FPCA to extract features from MRI-derived information collected from multiple timepoints. The results of our study demonstrate the advantageous predictive power of the population-based longitudinal features to predict the disease onset compared with using only cross-sectional data-based on volumetric features extracted from a single timepoint, demonstrating the improved prediction power using FPC-derived longitudinal features. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 54 条
[1]  
[Anonymous], 2015, Advances in NeurIPS
[2]  
[Anonymous], 2016, P 1 MACHINE LEARNING
[3]   COMMON FUNCTIONAL PRINCIPAL COMPONENTS [J].
Benko, Michal ;
Haerdle, Wolfgang ;
Kneip, Alois .
ANNALS OF STATISTICS, 2009, 37 (01) :1-34
[4]   Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data [J].
Bhagwat, Nikhil ;
Viviano, Joseph D. ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (09)
[5]   Automatic temporal lobe atrophy assessment in prodromal AD: Data from the DESCRIPA study [J].
Chincarini, Andrea ;
Bosco, Paolo ;
Gemme, Gianluca ;
Esposito, Mario ;
Rei, Luca ;
Squarcia, Sandro ;
Bellotti, Roberto ;
Minthon, Lennart ;
Frisoni, Giovanni ;
Scheltens, Philip ;
Froelich, Lutz ;
Soininen, Hilkka ;
Visser, Pieter-Jelle ;
Nobili, Flavio .
ALZHEIMERS & DEMENTIA, 2014, 10 (04) :456-467
[6]   Comparing 3T and 1.5T MRI for Mapping Hippocampal Atrophy in the Alzheimer's Disease Neuroimaging Initiative [J].
Chow, N. ;
Hwang, K. S. ;
Hurtz, S. ;
Green, A. E. ;
Somme, J. H. ;
Thompson, P. M. ;
Elashoff, D. A. ;
Jack, C. R. ;
Weiner, M. ;
Apostolova, L. G. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (04) :653-660
[7]   Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease [J].
Collij, Lyduine E. ;
Heeman, Fiona ;
Kuijer, Joost P. A. ;
Ossenkoppele, Rik ;
Benedictus, Marije R. ;
Moller, Christiane ;
Verfaillie, Sander C. J. ;
Sanz-Arigita, Ernesto J. ;
van Berckel, Bart N. M. ;
van der Flier, Wiesje M. ;
Scheltens, Philip ;
Barkhof, Frederik ;
Wink, Alle Meije .
RADIOLOGY, 2016, 281 (03) :865-875
[8]   Detection of Alzheimer's Disease Signature in MR Images Seven Years Before Conversion to Dementia: Toward an Early Individual Prognosis [J].
Coupe, Pierrick ;
Fonov, Vladimir S. ;
Bernard, Charlotte ;
Zandifar, Azar ;
Eskildsen, Simon F. ;
Helmer, Catherine ;
Manjon, Jose V. ;
Amieva, Helene ;
Dartigues, Jean-Francois ;
Allard, Michele ;
Catheline, Gwenaelle ;
Collins, D. Louis .
HUMAN BRAIN MAPPING, 2015, 36 (12) :4758-4770
[9]   RNN-based longitudinal analysis for diagnosis of Alzheimer's disease [J].
Cui, Ruoxuan ;
Liu, Manhua .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 73 :1-10
[10]   ASYMPTOTIC THEORY FOR THE PRINCIPAL COMPONENT ANALYSIS OF A VECTOR RANDOM FUNCTION - SOME APPLICATIONS TO STATISTICAL-INFERENCE [J].
DAUXOIS, J ;
POUSSE, A ;
ROMAIN, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :136-154