BASIS IN AN INVARIANT SPACE OF ENTIRE FUNCTIONS

被引:6
作者
Krivosheev, A. S.
Krivosheeva, O. A. [1 ]
机构
[1] Baskhir State Univ, Ul Zaki Validi 32, Ufa 450076, Russia
关键词
Entire function; basis; invariant subspace; interpolation;
D O I
10.1090/spmj/1387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a basis is studied in a space of entire functions invariant under the differentiation operator. It is proved that every such space possesses a basis consisting of linear combinations of generalized eigenvectors. These linear combinations are formed within groups of exponents of arbitrarily small relative diameter. A complete description of the way to split the exponents into groups is obtained. Also, a criterion is found for the existence of a basis constructed by groups of zero relative diameter (so-called relatively small groups). In this connection a new criterion is obtained for the finiteness of the lower indicator of an entire function of exponential type.
引用
收藏
页码:273 / 316
页数:44
相关论文
共 21 条
[1]  
Azarin V. S., 1975, FUNCT ANAL APPL, V9, p[47, 41]
[2]  
Gel'fond O. A., 1951, T MAT I STEKLOVA, V38, P42
[3]  
Grothendieck A., 1954, SUMMA BRASIL MATH, V3, P57
[4]  
Hormander Lars, 1983, GRUND MATH WISS, V256
[5]  
KRASICHKOV IF, 1965, SIB MAT ZH, V6
[6]   A basis in an invariant subspace of analytic functions [J].
Krivosheev, A. S. ;
Krivosheeva, O. A. .
SBORNIK MATHEMATICS, 2013, 204 (12) :1745-1796
[7]   A fundamental principle for invariant subspaces in convex domains [J].
Krivosheev, AS .
IZVESTIYA MATHEMATICS, 2004, 68 (02) :291-353
[9]   COMPLEX-ANALYSIS AND CONVOLUTION-OPERATORS [J].
KRIVOSHEEV, AS ;
NAPALKOV, VV .
RUSSIAN MATHEMATICAL SURVEYS, 1992, 47 (06) :1-56
[10]  
Krivosheyev AS, 2012, UFA MATH J, V4, P82