A hierarchical porous carbon-nanotube skeleton for sensing films with ultrahigh sensitivity, stretchability, and mechanical compliance

被引:16
作者
Han, Xiao [1 ]
Zhang, Hongbo [1 ]
Xiao, Wei [1 ]
Han, Xiaolong [1 ]
He, Aihua [1 ]
Nie, Huarong [1 ]
机构
[1] Qingdao Univ Sci & Technol, Minist Educ, Shandong Prov Key Lab Olefin Catalysis & Polymeri, Sch Polymer Sci & Engn,Key Lab Rubber Plast, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
Conductive networks - Health monitoring - Hierarchical porous carbons - High spatial resolution - Mechanical compliance - Microwave assisted - Simultaneous achievement - Ultra-high-sensitivity;
D O I
10.1039/d0ta10375f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wearable thin-film strain sensors attract increasing attention due to their minimal invasiveness onto the human skin and potential use in health monitoring; however, the simultaneous achievement of high sensitivity and stretchability with such sensors is challenging, and mechanical compliance is rarely considered. Using a thin and hierarchical porous carbon-nanotube (CNT) skeleton (30 mu m thickness) prepared by rapid and scalable microwave-assisted fabrication within 30 s, we developed strain sensors with highly enhanced performance. The as-prepared thin CNT skeleton consisting of macroporous, microporous, and hollow fiber architectures that are composed of numerous intertwined CNTs provides a sophisticated conductive network and intrinsic mechanical ductility to synergistically impart a strain sensor with high deformation (stretchability > 120%), high sensitivity in a wide strain range (gauge factor varying from similar to 42 at 5% strain to similar to 8470 at 120% strain), fast response (<30 ms), excellent durability (>5000 cycles under 40% strain) and outstanding mechanical compliance (a great resistance change (Delta R/R-0 > 500) at 12% strain under 0.05 N of minute tensile force). Consequently, the strain sensor with high spatial resolution can not only accurately detect a full-range of human motions, but also rapidly respond to a minimal force in the order of butterfly settling.
引用
收藏
页码:4317 / 4325
页数:9
相关论文
共 60 条
[1]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[2]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[3]   Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors [J].
Boland, Conor S. ;
Khan, Umar ;
Benameur, Hanane ;
Coleman, Jonathan N. .
NANOSCALE, 2017, 9 (46) :18507-18515
[4]   Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow [J].
Boutry, Clementine M. ;
Beker, Levent ;
Kaizawa, Yukitoshi ;
Vassos, Christopher ;
Tran, Helen ;
Hinckley, Allison C. ;
Pfattner, Raphael ;
Niu, Simiao ;
Li, Junheng ;
Claverie, Jean ;
Wang, Zhen ;
Chang, James ;
Fox, Paige M. ;
Bao, Zhenan .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (01) :47-57
[5]   Extraordinarily Stretchable All-Carbon Collaborative Nanoarchitectures for Epidermal Sensors [J].
Cai, Yichen ;
Shen, Jie ;
Dai, Ziyang ;
Zang, Xiaoxian ;
Dong, Qiuchun ;
Guan, Guofeng ;
Li, Lain-Jong ;
Huang, Wei ;
Dong, Xiaochen .
ADVANCED MATERIALS, 2017, 29 (31)
[6]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[7]   A Stretchable and Highly Sensitive Graphene-Based Fiber for Sensing Tensile Strain, Bending, and Torsion [J].
Cheng, Yin ;
Wang, Ranran ;
Sun, Jing ;
Gao, Lian .
ADVANCED MATERIALS, 2015, 27 (45) :7365-+
[8]   Effect of nitrogen additives on thermal decomposition of cotton [J].
Gaan, Sabyasachi ;
Sun, Gang .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 84 (01) :108-115
[9]   Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring [J].
Gao, Yuji ;
Ota, Hiroki ;
Schaler, Ethan W. ;
Chen, Kevin ;
Zhao, Allan ;
Gao, Wei ;
Fahad, Hossain M. ;
Leng, Yonggang ;
Zheng, Anzong ;
Xiong, Furui ;
Zhang, Chuchu ;
Tai, Li-Chia ;
Zhao, Peida ;
Fearing, Ronald S. ;
Javey, Ali .
ADVANCED MATERIALS, 2017, 29 (39)
[10]   25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress [J].
Hammock, Mallory L. ;
Chortos, Alex ;
Tee, Benjamin C-K ;
Tok, Jeffrey B-H ;
Bao, Zhenan .
ADVANCED MATERIALS, 2013, 25 (42) :5997-6037