GiniClust: detecting rare cell types from single-cell gene expression data with Gini index

被引:188
作者
Jiang, Lan [1 ,2 ,3 ]
Chen, Huidong [1 ,2 ,4 ]
Pinello, Luca [1 ,2 ]
Yuan, Guo-Cheng [1 ,2 ,5 ]
机构
[1] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02215 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Boston, MA 02115 USA
[4] Tongji Univ, Dept Comp Sci & Technol, Shanghai, Peoples R China
[5] Harvard Stem Cell Inst, Cambridge, MA 02138 USA
关键词
Clustering; Single-cell analysis; RNA-seq; qPCR; Gini index; Rare cell type; CHARACTERIZING HETEROGENEITY;
D O I
10.1186/s13059-016-1010-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.
引用
收藏
页数:13
相关论文
共 28 条
[1]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[2]   Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts [J].
Ay, Ferhat ;
Bailey, Timothy L. ;
Noble, William Stafford .
GENOME RESEARCH, 2014, 24 (06) :999-1011
[3]   Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells [J].
Biagioli, Marta ;
Pinto, Milena ;
Cesselli, Daniela ;
Zaninello, Marta ;
Lazarevic, Dejan ;
Roncaglia, Paola ;
Simone, Roberto ;
Vlachouli, Christina ;
Plessy, Charles ;
Bertin, Nicolas ;
Beltrami, Antonio ;
Kobayashi, Kazuto ;
Gallo, Vittorio ;
Santoro, Claudio ;
Ferrer, Isidro ;
Rivella, Stefano ;
Beltrami, Carlo Alberto ;
Carninci, Piero ;
Raviola, Elio ;
Gustincich, Stefano .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) :15454-15459
[4]   Single cell dissection of early kidney development: multilineage priming [J].
Brunskill, Eric W. ;
Park, Joo-Seop ;
Chung, Eunah ;
Chen, Feng ;
Magella, Bliss ;
Potter, S. Steven .
DEVELOPMENT, 2014, 141 (15) :3093-3101
[5]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[6]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[7]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[8]  
Gini Corrado., 1912, REPRINTED MEMORIE ME
[9]   Single-cell messenger RNA sequencing reveals rare intestinal cell types [J].
Grun, Dominic ;
Lyubimova, Anna ;
Kester, Lennart ;
Wiebrands, Kay ;
Basak, Onur ;
Sasaki, Nobuo ;
Clevers, Hans ;
van Oudenaarden, Alexander .
NATURE, 2015, 525 (7568) :251-+
[10]  
Grün D, 2014, NAT METHODS, V11, P637, DOI [10.1038/NMETH.2930, 10.1038/nmeth.2930]