An improved method of ultimate bound computation for linear switched systems with bounded disturbances

被引:1
作者
Shen, Tao [1 ]
Petersen, Ian R. [2 ]
机构
[1] Univ Jinan, Sch Elect Engn, Jinan 250022, Peoples R China
[2] Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Ultimate bound; Switched systems; Bounded disturbances; Arbitrary switching; INVARIANT-SETS; STABILITY; STABILIZABILITY; DESIGN;
D O I
10.1016/j.automatica.2016.03.031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, an improved method of ultimate bound computation for a linear switched system under arbitrary switching is presented. An ultimate bound for a linear switched system can be computed by solving a class of linear matrix inequalities. The effectiveness of the obtained results is illustrated by numerical examples. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 152
页数:5
相关论文
共 10 条
[1]   Modal and transition dwell time computation in switching systems: A set-theoretic approach [J].
Blanchini, Franco ;
Casagrande, Daniele ;
Miani, Stefano .
AUTOMATICA, 2010, 46 (09) :1477-1482
[2]   Perspectives and results on the stability and stabilizability of hybrid systems [J].
DeCarlo, RA ;
Branicky, MS ;
Pettersson, S ;
Lennartson, B .
PROCEEDINGS OF THE IEEE, 2000, 88 (07) :1069-1082
[3]   Characterization and computation of disturbance invariant sets for constrained switched linear systems with dwell time restriction [J].
Dehghan, Masood ;
Ong, Chong-Jin .
AUTOMATICA, 2012, 48 (09) :2175-2181
[4]   Componentwise ultimate bound and invariant set computation for switched linear systems [J].
Haimovich, H. ;
Seron, M. M. .
AUTOMATICA, 2010, 46 (11) :1897-1901
[5]   Bounds and invariant sets for a class of switching systems with delayed-state-dependent perturbations [J].
Haimovich, Hernan ;
Seron, Maria M. .
AUTOMATICA, 2013, 49 (03) :748-754
[6]  
Kofman E, 2007, INT J CONTROL, V80, P167, DOI 10.1080/0020170600611265
[7]   Control design with guaranteed ultimate bound for perturbed systems [J].
Kofman, Ernesto ;
Seron, Maria M. ;
Haimovich, Hernan .
AUTOMATICA, 2008, 44 (07) :1815-1821
[8]   Basic problems in stability and design of switched systems [J].
Liberzon, D ;
Morse, AS .
IEEE CONTROL SYSTEMS MAGAZINE, 1999, 19 (05) :59-70
[9]   Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results [J].
Lin, Hai ;
Antsaklis, Panos J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) :308-322
[10]   Stability criteria for switched and hybrid systems [J].
Shorten, Robert ;
Wirth, Fabian ;
Mason, Oliver ;
Wulff, Kai ;
King, Christopher .
SIAM REVIEW, 2007, 49 (04) :545-592