Probability Generating Function Based Jeffrey's Divergence for Statistical Inference

被引:4
作者
Sharifdoust, Maryam [1 ]
Ng, Choung Min [2 ]
Ong, Seng-Huat [2 ]
机构
[1] Islamic Azad Univ, Khomeinishahr Branch, Dept Math, Esfahan, Iran
[2] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
关键词
Bias; Goodness-of-fit; Kullback-Liebler divergence; Maximum likelihood; Mean squared error; M-estimation; Minimum Hellinger distance; Monte Carlo simulation; Parameter estimation; GOODNESS-OF-FIT; NEGATIVE BINOMIAL-DISTRIBUTION; KULLBACK-LEIBLER DIVERGENCE; MINIMUM HELLINGER DISTANCE; DISCRETE-DISTRIBUTIONS; PARAMETER-ESTIMATION; TESTS; POISSON; INFORMATION; MODELS;
D O I
10.1080/03610918.2014.904344
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Statistical inference procedures based on transforms such as characteristic function and probability generating function have been examined by many researchers because they are much simpler than probability density functions. Here, a probability generating function based Jeffrey's divergence measure is proposed for parameter estimation and goodness-of-fit test. Being a member of the M-estimators, the proposed estimator is consistent. Also, the proposed goodness-of-fit test has good statistical power. The proposed divergence measure shows improved performance over existing probability generating function based measures. Real data examples are given to illustrate the proposed parameter estimation method and goodness-of-fit test.
引用
收藏
页码:2445 / 2458
页数:14
相关论文
共 42 条
[1]   Estimation of the shape parameter k of the negative binomial distribution [J].
Al-Saleh, MF ;
Al-Batainah, FK .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :431-441
[2]  
[Anonymous], 2009, Wiley Series in Probability and Statistics, DOI DOI 10.1002/9780470434697.CH7
[3]  
[Anonymous], 2008, COMPUTER MODELLING N
[4]   A GOODNESS OF FIT TEST FOR THE POISSON-DISTRIBUTION BASED ON THE EMPIRICAL GENERATING FUNCTION [J].
BARINGHAUS, L ;
HENZE, N .
STATISTICS & PROBABILITY LETTERS, 1992, 13 (04) :269-274
[5]   MINIMUM HELLINGER DISTANCE ESTIMATES FOR PARAMETRIC MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1977, 5 (03) :445-463
[6]   Test of misspecification with application to negative binomial distribution [J].
Chua, K. C. ;
Ong, S. H. .
COMPUTATIONAL STATISTICS, 2013, 28 (03) :993-1009
[7]   Estimating parameters for discrete distributions via the empirical probability generating function [J].
Dowling, MM ;
Nakamura, M .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (01) :301-313
[8]   A CLASS OF DISTRIBUTIONS APPLICABLE TO ACCIDENTS [J].
EDWARDS, CB ;
GURLAND, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1961, 56 (295) :503-&
[9]  
Efron B., 1993, INTRO BOOTSTRAP, P184
[10]   EMPIRICAL CHARACTERISTIC FUNCTION AND ITS APPLICATIONS [J].
FEUERVERGER, A ;
MUREIKA, RA .
ANNALS OF STATISTICS, 1977, 5 (01) :88-97