Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes

被引:26
作者
Dastjerdi, Hadi Tavakoli [1 ]
Qi, Pengfei [3 ]
Fan, Zhiyong [4 ,5 ]
Tavakoli, Mohammad Mandi [2 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Zhong Shan Rui Ke New Energy Co Ltd, 13th Torch Rd, Zhongshan City 528437, Guangdong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[5] HKUST Shenzhen Res Inst, 9 Yuexing First RD,South Area,Hitech Pk, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
PbS QDs; solar cell; P3HT; cost-effective; semitransparent; copper; HIGHLY EFFICIENT; SUPERCRITICAL SYNTHESIS; POLY(3-HEXYLTHIOPHENE); PASSIVATION; SURFACE; NANOCRYSTALS; WEIGHT;
D O I
10.1021/acsami.9b18487
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
PbS quantum dots (QDs) have gained significant attention as promising solution-based materials for third generation of photovoltaic (PV) devices, thanks to their size-tunable band gap, air stability, and low-cost solution processing. Gold (Au), despite its high cost, is the standard electrode in the conventional PbS QD PV architecture because of its perfect alignment with valence levels of PbS QDs. However, to comply with manufacturing requirements for scalable device processing, alternative cost-effective electrodes are urgently required. Here, we employed an interface engineering approach and deposited poly(3-hexylthiophene-2,5-diyl) as a hole transport layer on 1,2-ethanedithiol-capped PbS QDs in order to adjust the valence band of QDs with the work function of inexpensive copper (Cu) electrodes. In fact, this is the first report of a Au-free PbS QD PV system employing the conventional device structure. Our Cu-based device shows a maximum power conversion efficiency (PCE) of 8.7% which is comparable with that of the Au-based device (10.2%). Interestingly, the P3HT-based device shows improved stability with relatively 10% PCE loss after 230 h under continuous illumination. Moreover, using an ultrathin Cu electrode, a semitransparent PbS QD PV is fabricated with a remarkably high average visible transparency of 26% and a PCE of 7.4%.
引用
收藏
页码:818 / 825
页数:8
相关论文
共 42 条
[11]   Synergistic effect of electron transport layer and colloidal quantum dot solid enable PbSe quantum dot solar cell achieving over 10 % efficiency [J].
Hu, Long ;
Geng, Xun ;
Singh, Simrjit ;
Shi, Junjie ;
Hu, Yicong ;
Li, Shaoyuan ;
Guan, Xinwei ;
He, Tengyue ;
Li, Xiaoning ;
Cheng, Zhenxiang ;
Patterson, Robert ;
Huang, Shujuan ;
Wu, Tom .
NANO ENERGY, 2019, 64
[12]   Passivation of PbS Quantum Dot Surface with L-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells [J].
Jumabekov, Askhat N. ;
Cordes, Niklas ;
Siegler, Timothy D. ;
Docampo, Pablo ;
Ivanova, Alesja ;
Fominykh, Ksenia ;
Medina, Dana D. ;
Peter, Laurence M. ;
Bein, Thomas .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (07) :4600-4607
[13]   Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage [J].
Jung, Jae Woong ;
Park, Joon-Suh ;
Han, Il Ki ;
Lee, Yujeong ;
Park, Cheolmin ;
Kwon, Woosung ;
Park, Minwoo .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12158-12167
[14]   Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes [J].
Kawawaki, Tokuhisa ;
Wang, Haibin ;
Kubo, Takaya ;
Saito, Koichiro ;
Nakazaki, Jotaro ;
Segawa, Hiroshi ;
Tatsuma, Tetsu .
ACS NANO, 2015, 9 (04) :4165-4172
[15]   Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells [J].
Kim, Guan-Woo ;
Kang, Gyeongho ;
Kim, Jinseck ;
Lee, Gang-Young ;
Kim, Hong Il ;
Pyeon, Limok ;
Lee, Jaechol ;
Park, Taiho .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2326-2333
[16]   Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics [J].
Kirmani, Ahmad R. ;
Sheikh, Arif D. ;
Niazi, Muhammad R. ;
Haque, Md Azimul ;
Liu, Mengxia ;
de Arquer, F. Pelayo Garcia ;
Xu, Jixian ;
Sun, Bin ;
Voznyy, Oleksandr ;
Gasparini, Nicola ;
Baran, Derya ;
Wu, Tom ;
Sargent, Edward H. ;
Amassian, Aram .
ADVANCED MATERIALS, 2018, 30 (35)
[17]   Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight [J].
Kline, RJ ;
McGehee, MD ;
Kadnikova, EN ;
Liu, JS ;
Fréchet, JMJ ;
Toney, MF .
MACROMOLECULES, 2005, 38 (08) :3312-3319
[18]   10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent Polarity-Engineered Halide Passivation [J].
Lan, Xinzheng ;
Voznyy, Oleksandr ;
de Arquer, F. Pelayo Garcia ;
Liu, Mengxia ;
Xu, Jixian ;
Proppe, Andrew H. ;
Walters, Grant ;
Fan, Fengjia ;
Tan, Hairen ;
Liu, Min ;
Yang, Zhenyu ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
NANO LETTERS, 2016, 16 (07) :4630-4634
[19]   Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks [J].
Liu, Mengxia ;
Che, Fanglin ;
Sun, Bin ;
Voznyy, Oleksandr ;
Proppe, Andrew ;
Munir, Rahim ;
Wei, Mingyang ;
Quintero-Bermudez, Rafael ;
Hu, Lilei ;
Hoogland, Sjoerd ;
Mandelis, Andreas ;
Amassian, Aram ;
Kelley, Shana O. ;
de Arquer, F. Pelayo Garcia ;
Sargent, Edward H. .
ACS ENERGY LETTERS, 2019, 4 (06) :1225-1230
[20]   High-Efficiency PbS Quantum-Dot Solar Cells with Greatly Simplified Fabrication Processing via "Solvent-Curing" [J].
Lu, Kunyuan ;
Wang, Yongjie ;
Liu, Zeke ;
Han, Lu ;
Shi, Guozheng ;
Fang, Honghua ;
Chen, Jun ;
Ye, Xingchen ;
Chen, Si ;
Yang, Fan ;
Shulga, Artem G. ;
Wu, Tian ;
Gu, Mengfan ;
Zhou, Sijie ;
Fan, Jian ;
Loi, Maria Antonietta ;
Ma, Wanli .
ADVANCED MATERIALS, 2018, 30 (25)