Parameter-dependent Lyapunov function method for a class of uncertain nonlinear systems with multiple equilibria

被引:7
作者
Duan, Zhisheng [1 ]
Wang, Jinzhi
Huang, Lin
机构
[1] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
[2] Peking Univ, Dept Engn Sci & Mech, Beijing 100871, Peoples R China
关键词
LMI characterization; parameter-dependent Lyapunov function; nonlinear systems with multiple equilibria;
D O I
10.1007/s00034-005-1201-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
First, a new linear matrix inequality (LMI) characterization of extended strict positive realness is presented for linear continuous-time systems. Then a class of nonlinear systems with multiple equilibria subject to polytopic uncertainty is addressed by the parameter-dependent Lyapunov function method. New sufficient conditions for global convergence are presented. This allows the Lyapunov function to be parameter dependent. Furthermore, an LMI-based controller design method is also given, and reduced-order controllers can be designed by performing a structural constraint on the introduced slack variables. Several numerical examples are included to demonstrate the applicability of the proposed method.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 28 条
[11]   A new viewpoint of H∞ control in frequency domain [J].
Duan, ZS ;
Huang, L ;
Wang, L .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (09) :627-636
[12]  
Gahinet P., 1995, LMI Control Toolbox
[13]  
Gardner F. M., 1979, PHASELOCK TECHNIQUES
[14]  
GU G, 1990, IEEE T AUTOMATIC CON, V35, P915
[15]  
HUANG L, 2003, FUNDAMENTAL THEORY R
[16]  
Leonov G. A, 1996, FrequencyDomain Methods for Nonlinear Analysis: Theory and Applications
[17]  
LEONOV GA, 1992, FREQUENCY METHODS OS
[18]   A new robust D-stability condition for real convex polytopic uncertainty [J].
Peaucelle, D ;
Arzelier, D ;
Bachelier, O ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2000, 40 (01) :21-30
[19]  
Popov V.M., 1973, HYPERSTABILITY AUTOM
[20]   On the Kalman-Yakubovich-Popov lemma [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 1996, 28 (01) :7-10