NONPARAMETRIC BAYESIAN LEARNING OF HETEROGENEOUS DYNAMIC TRANSCRIPTION FACTOR NETWORKS

被引:4
作者
Luo, Xiangyu [1 ]
Wei, Yingying [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, G26 Lady Shaw Bldg, Shatin, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Stat, 111 Lady Shaw Bldg, Shatin, Hong Kong, Peoples R China
关键词
Poisson graphical model; nonparametric Bayes; parallel Markov chain Monte Carlo; next generation sequencing; INVERSE COVARIANCE ESTIMATION; SELECTIVE GENE-EXPRESSION; GAUSSIAN GRAPHICAL MODELS; NF-KAPPA-B; VARIABLE SELECTION; PROTEIN; DISTRIBUTIONS; ENCYCLOPEDIA; FRAMEWORK; INFERENCE;
D O I
10.1214/17-AOAS1129
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Gene expression is largely controlled by transcription factors (TFs) in a collaborative manner. Therefore, an understanding of TF collaboration is crucial for the elucidation of gene regulation. The co-activation of TFs can be represented by networks. These networks are dynamic in diverse biological conditions and heterogeneous across the genome within each biological condition. Existing methods for construction of TF networks lack solid statistical models, analyze each biological condition separately, and enforce a single network for all genomic locations within one biological condition, resulting in low statistical power and misleading spurious associations. In this paper, we present a novel Bayesian nonparametric dynamic Poisson graphical model for inference on TF networks. Our approach automatically teases out genome heterogeneity and borrows information across conditions to improve signal detection from very few replicates, thus offering a valid and efficient measure of TF co-activations. We develop an efficient parallel Markov chain Monte Carlo algorithm for posterior computation. The proposed approach is applied to study TF associations in ENCODE cell lines and provides novel findings.
引用
收藏
页码:1749 / 1772
页数:24
相关论文
共 62 条
  • [1] [Anonymous], 1985, E SCH ETE PROBABILIT
  • [2] Regularized estimation of large covariance matrices
    Bickel, Peter J.
    Levina, Elizaveta
    [J]. ANNALS OF STATISTICS, 2008, 36 (01) : 199 - 227
  • [3] SUBSAMPLING METHODS FOR GENOMIC INFERENCE
    Bickel, Peter J.
    Boley, Nathan
    Brown, James B.
    Huang, Haiyan
    Zhang, Nancy R.
    [J]. ANNALS OF APPLIED STATISTICS, 2010, 4 (04) : 1660 - 1697
  • [4] Gene co-expression network topology provides a framework for molecular characterization of cellular state
    Carter, SL
    Brechbühler, CM
    Griffin, M
    Bond, AT
    [J]. BIOINFORMATICS, 2004, 20 (14) : 2242 - 2250
  • [5] Understanding transcriptional regulation by integrative analysis of transcription factor binding data
    Cheng, Chao
    Alexander, Roger
    Min, Renqiang
    Leng, Jing
    Yip, Kevin Y.
    Rozowsky, Joel
    Yan, Koon-Kiu
    Dong, Xianjun
    Djebali, Sarah
    Ruan, Yijun
    Davis, Carrie A.
    Carninci, Piero
    Lassman, Timo
    Gingerasi, Thomas R.
    Guigo, Roderic
    Birney, Ewan
    Weng, Zhiping
    Snyder, Michael
    Gerstein, Mark
    [J]. GENOME RESEARCH, 2012, 22 (09) : 1658 - 1667
  • [6] Hierarchical Gaussian graphical models: Beyond reversible jump
    Cheng, Yuan
    Lenkoshi, Alex
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 2309 - 2331
  • [7] Gene Regulation Network Inference With Joint Sparse Gaussian Graphical Models
    Chun, Hyonho
    Zhang, Xianghua
    Zhao, Hongyu
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (04) : 954 - 974
  • [8] The joint graphical lasso for inverse covariance estimation across multiple classes
    Danaher, Patrick
    Wang, Pei
    Witten, Daniela M.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (02) : 373 - 397
  • [9] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [10] An integrated encyclopedia of DNA elements in the human genome
    Dunham, Ian
    Kundaje, Anshul
    Aldred, Shelley F.
    Collins, Patrick J.
    Davis, CarrieA.
    Doyle, Francis
    Epstein, Charles B.
    Frietze, Seth
    Harrow, Jennifer
    Kaul, Rajinder
    Khatun, Jainab
    Lajoie, Bryan R.
    Landt, Stephen G.
    Lee, Bum-Kyu
    Pauli, Florencia
    Rosenbloom, Kate R.
    Sabo, Peter
    Safi, Alexias
    Sanyal, Amartya
    Shoresh, Noam
    Simon, Jeremy M.
    Song, Lingyun
    Trinklein, Nathan D.
    Altshuler, Robert C.
    Birney, Ewan
    Brown, James B.
    Cheng, Chao
    Djebali, Sarah
    Dong, Xianjun
    Dunham, Ian
    Ernst, Jason
    Furey, Terrence S.
    Gerstein, Mark
    Giardine, Belinda
    Greven, Melissa
    Hardison, Ross C.
    Harris, Robert S.
    Herrero, Javier
    Hoffman, Michael M.
    Iyer, Sowmya
    Kellis, Manolis
    Khatun, Jainab
    Kheradpour, Pouya
    Kundaje, Anshul
    Lassmann, Timo
    Li, Qunhua
    Lin, Xinying
    Marinov, Georgi K.
    Merkel, Angelika
    Mortazavi, Ali
    [J]. NATURE, 2012, 489 (7414) : 57 - 74