Regularity of spectral fractional Dirichlet and Neumann problems

被引:49
作者
Grubb, Gerd [1 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Spectral fractional Laplacian; Dirichlet and Neumann problems; Lp Sobolev regularity; Holder regularity; nonsmooth coefficients; PSEUDODIFFERENTIAL-OPERATORS; EXTENSION PROBLEM; MU-TRANSMISSION; INTERPOLATION; CALCULUS; DOMAINS;
D O I
10.1002/mana.201500041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the fractional powers (A(Dir))(a) and (A(Neu))(a) of the Dirichlet and Neumann realizations of a second-order strongly elliptic differential operator A on a smooth bounded subset Omega of R-n. Recalling the results on complex powers and complex interpolation of domains of elliptic boundary value problems by Seeley in the 1970's, we demonstrate how they imply regularity properties in full scales of H-p(s)-Sobolev spaces and Holder spaces, for the solutions of the associated equations. Extensions to nonsmooth situations for low values of s are derived by use of recent results on H-infinity-calculus. We also include an overview of the various Dirichlet- and Neumann-type boundary problems associated with the fractional Laplacian. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:831 / 844
页数:14
相关论文
共 50 条
[1]  
Abatangelo N., ARXIV13103193
[2]   Extension theory and Krein-type resolvent formulas for nonsmooth boundary value problems [J].
Abels, Helmut ;
Grubb, Gerd ;
Wood, Ian Geoffrey .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) :4037-4100
[3]   ON ABSTRACT PARABOLIC FUNDAMENTAL-SOLUTIONS [J].
AMANN, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1987, 39 (01) :93-116
[4]  
Amann H., 1995, Abstract Linear Theory
[5]   Superlinear nonlocal fractional problems with infinitely many solutions [J].
Binlin, Zhang ;
Bisci, Giovanni Molica ;
Servadei, Raffaella .
NONLINEARITY, 2015, 28 (07) :2247-2264
[6]  
Blumenthal RM., 1959, Pac. J. Math, V9, P399
[7]   Censored stable processes [J].
Bogdan, K ;
Burdzy, K ;
Chen, ZQ .
PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (01) :89-152
[8]  
Bonforte M., ARXIV14046195
[9]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[10]  
Caffarelli L., ARXIV14097721