Quantized conductance atomic switch

被引:1029
作者
Terabe, K
Hasegawa, T
Nakayama, T
Aono, M
机构
[1] Natl Inst Mat Sci, Nanomat Labs, Tsukuba, Ibaraki 3050044, Japan
[2] Japan Sci & Technol Agcy, ICORP, SORST, Kawaguchi, Saitama 3320012, Japan
[3] RIKEN, Wako, Saitama 3510198, Japan
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1038/nature03190
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A large variety of nanometre-scale devices have been investigated in recent years(1-7) that could overcome the physical and economic limitations of current semiconductor devices(8). To be of technological interest, the energy consumption and fabrication cost of these 'nanodevices' need to be low. Here we report a new type of nanodevice, a quantized conductance atomic switch (QCAS), which satisfies these requirements. The QCAS works by controlling the formation and annihilation of an atomic bridge at the crossing point between two electrodes. The wires are spaced approximately 1 nm apart, and one of the two is a solid electrolyte wire from which the atomic bridges are formed. We demonstrate that such a QCAS can switch between 'on' and 'off ' states at room temperature and in air at a frequency of 1 MHz and at a small operating voltage (600 mV). Basic logic circuits are also easily fabricated by crossing solid electrolyte wires with metal electrodes.
引用
收藏
页码:47 / 50
页数:4
相关论文
共 29 条
[1]   Quantum properties of atomic-sized conductors [J].
Agraït, N ;
Yeyati, AL ;
van Ruitenbeek, JM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (2-3) :81-279
[2]  
[Anonymous], 2001, RIKEN REV
[3]   Nanoscale molecular-switch devices fabricated by imprint lithography [J].
Chen, Y ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Williams, RS ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Olynick, DL ;
Anderson, E .
APPLIED PHYSICS LETTERS, 2003, 82 (10) :1610-1612
[4]   Electronically configurable molecular-based logic gates [J].
Collier, CP ;
Wong, EW ;
Belohradsky, M ;
Raymo, FM ;
Stoddart, JF ;
Kuekes, PJ ;
Williams, RS ;
Heath, JR .
SCIENCE, 1999, 285 (5426) :391-394
[5]   Conductance quantization in nanowires formed between micro and macroscopic metallic electrodes [J].
CostaKramer, JL ;
Garcia, N ;
GarciaMochales, P ;
Serena, PA ;
Marques, MI ;
Correia, A .
PHYSICAL REVIEW B, 1997, 55 (08) :5416-5424
[6]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[7]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[8]   Quantized conductance in Au-Pd and Au-Ag alloy nanocontacts [J].
Enomoto, A ;
Kurokawa, S ;
Sakai, A .
PHYSICAL REVIEW B, 2002, 65 (12) :1-6
[9]   Quantized conductance in relays [J].
Hansen, K ;
Laegsgaard, E ;
Stensgaard, I ;
Besenbacher, F .
PHYSICAL REVIEW B, 1997, 56 (04) :2208-2220
[10]   A defect-tolerant computer architecture: Opportunities for nanotechnology [J].
Heath, JR ;
Kuekes, PJ ;
Snider, GS ;
Williams, RS .
SCIENCE, 1998, 280 (5370) :1716-1721