Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime

被引:39
作者
Hamma, Alioscia [1 ]
Markopoulou, Fotini [1 ]
Lloyd, Seth [2 ]
Caravelli, Francesco [1 ,3 ]
Severini, Simone [4 ]
Markstrom, Klas [5 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] MIT, Cambridge, MA 02139 USA
[3] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
[5] Ume Univ, Dept Math & Math Stat, S-90187 Umea, Sweden
基金
加拿大自然科学与工程研究理事会;
关键词
ENTANGLEMENT; GRAVITY; VOLUME; AREA;
D O I
10.1103/PhysRevD.81.104032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.
引用
收藏
页数:22
相关论文
共 47 条
[1]  
ALON N, 2008, 20 ACM S PAR ALG ARC
[2]   Emergence of a 4D world from causal quantum gravity [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW LETTERS, 2004, 93 (13) :131301-1
[3]   Non-perturbative Lorentzian quantum gravity, causality and topology change [J].
Ambjorn, J ;
Loll, R .
NUCLEAR PHYSICS B, 1998, 536 (1-2) :407-434
[4]   THE SELF-ORGANIZED DE SITTER UNIVERSE [J].
Ambjorn, J. ;
Jurkiewicz, J. ;
Loll, R. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2008, 17 (13-14) :2515-2520
[5]  
[Anonymous], 2006, GENERATINGFUNCTIONOL
[6]  
[Anonymous], ARXIVGRQC0607032
[7]  
[Anonymous], ARXIVQUANTPH0501135
[8]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[9]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[10]  
Avin C, 2008, LECT NOTES COMPUT SC, V5125, P121, DOI 10.1007/978-3-540-70575-8_11