An O(n+m)-time algorithm for finding a minimum-weight dominating set in a permutation graph

被引:11
作者
Rhee, C
Liang, YD
Dhall, SK
Lakshmivarahan, S
机构
[1] INDIANA UNIV PURDUE UNIV, DEPT COMP SCI, FT WAYNE, IN 46805 USA
[2] UNIV OKLAHOMA, SCH COMP SCI, NORMAN, OK 73019 USA
关键词
algorithm; dominating set; permutation graph;
D O I
10.1137/S0097539794200383
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Farber and Keil [Algorithmica, 4 (1989), pp. 221-236] presented an O(n(3))-time algorithm for finding a minimum-weight dominating set in permutation graphs. This result was improved to O(n(2) log(2) n) by Tsai and Hsu [SIGAL '90 Algorithms, Lecture Notes in Computer Science, Springer-Verlag, New York, 1990, pp. 109-117] and to O(n(n + m)) by the authors of this paper [Inform. Process. Lett., 37 (1991), pp. 219-224], respectively. In this paper, we introduce a new faster algorithm that takes only O(n + rn) time to solve the same problem, where m is the number of edges in a graph of n vertices.
引用
收藏
页码:404 / 419
页数:16
相关论文
共 12 条
  • [1] AN EFFICIENT ALGORITHM FOR MAXDOMINANCE, WITH APPLICATIONS
    ATALLAH, MJ
    KOSARAJU, SR
    [J]. ALGORITHMICA, 1989, 4 (02) : 221 - 236
  • [2] FINDING A MINIMUM INDEPENDENT DOMINATING SET IN A PERMUTATION GRAPH
    ATALLAH, MJ
    MANACHER, GK
    URRUTIA, J
    [J]. DISCRETE APPLIED MATHEMATICS, 1988, 21 (03) : 177 - 183
  • [3] A LINEAR RECOGNITION ALGORITHM FOR COGRAPHS
    CORNEIL, DG
    PERL, Y
    STEWART, LK
    [J]. SIAM JOURNAL ON COMPUTING, 1985, 14 (04) : 926 - 934
  • [4] DOMINATION IN PERMUTATION GRAPHS
    FARBER, M
    KEIL, JM
    [J]. JOURNAL OF ALGORITHMS, 1985, 6 (03) : 309 - 321
  • [5] Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
  • [6] A NEW APPROACH FOR THE DOMINATION PROBLEM ON PERMUTATION GRAPHS
    LIANG, Y
    RHEE, C
    DHALL, SK
    LAKSHMIVARAHAN, S
    [J]. INFORMATION PROCESSING LETTERS, 1991, 37 (04) : 219 - 224
  • [7] INCORPORATING NEGATIVE-WEIGHT VERTICES IN CERTAIN VERTEX-SEARCH GRAPH ALGORITHMS
    MANACHER, GK
    MANKUS, TA
    [J]. INFORMATION PROCESSING LETTERS, 1992, 42 (06) : 293 - 294
  • [8] TRANSITIVE ORIENTATION OF GRAPHS AND IDENTIFICATION OF PERMUTATION GRAPHS
    PNUELI, A
    LEMPEL, A
    EVEN, S
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (01): : 160 - &
  • [9] RHEE C, 1990, P 28 ANN ALL C COMM, P294
  • [10] BIPARTITE PERMUTATION GRAPHS
    SPINRAD, J
    BRANDSTADT, A
    STEWART, L
    [J]. DISCRETE APPLIED MATHEMATICS, 1987, 18 (03) : 279 - 292