Localization of solutions of anisotropic parabolic equations

被引:34
作者
Antontsev, Stanislav [2 ]
Shmarev, Sergey [1 ]
机构
[1] Univ Oviedo, Dept Matemat, Oviedo, Spain
[2] Univ Lisbon, CMAF, Lisbon, Portugal
关键词
Anisotropic parabolic equation; Energy solution; Localization; SINGULAR ADVECTIONS; ELLIPTIC-EQUATIONS; DIFFUSIONS;
D O I
10.1016/j.na.2008.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the localization properties of solutions of the Dirichlet problem for the anisotropic parabolic equations u(t) - Sigma(n)(i=1) D-i(a(i)(z, u)vertical bar D(i)u vertical bar(pi-2)D(i)u) = f(z), z = (x, t) is an element of Omega x (0, T), with constant exponents p(i) is an element of (1, infinity), and x is an element of Omega subset of R-n, n >= 2. Such equations arise from the mathematical description of diffusion processes. It is shown that if the equation combines the directions of slow diffusion for which p(i) > 2 and the directions of fast or linear diffusion corresponding to p(i) is an element of (1, 2) or p = 2, then the solutions may simultaneously display the properties intrinsic for the solutions of isotropic equations of fast or slow diffusion. Under the assumptions that f equivalent to 0 for t >= t(f) and u(0) equivalent to 0, f equivalent to 0 for x(1) > s we show, on the one hand, that the solution vanishes in a finite time if n/2 < Sigma(n)(i=1) 1/p(i) <= 1 + n/2 and, on the other hand, that the support of the same solution never reaches the plane x(1) = s + epsilon, provided that 1/n-1 >= 1/n-1 Sigma(n)(i=1) 1/p(i) > 1/p(1). (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E725 / E737
页数:13
相关论文
共 16 条
[1]  
Antontsev S, 2007, INT SER NUMER MATH, V154, P33
[2]   Extinction of Solutions of Parabolic Equations with Variable Anisotropic Nonlinearities [J].
Antontsev, S. ;
Shmarev, S. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) :11-21
[3]  
Antontsev S.N., 2002, PROGR NONLINEAR DIFF, V48
[4]   On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy [J].
Antontsev, SN ;
Shmarev, SI .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (05) :765-782
[5]  
ANTONTSEV SN, PUBL MAT IN PRESS
[6]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[7]   Nonlinear anisotropic elliptic and parabolic equations in RN with advection and lower order terms and locally integrable data [J].
Bendahmane, M ;
Karlsen, K .
POTENTIAL ANALYSIS, 2005, 22 (03) :207-227
[8]   Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations [J].
Bendahmane, M ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) :405-422
[9]   Renormalized solutions of an anisotropic reaction-diffusion-advection system with L1 data [J].
Bendahmane, Mostafa ;
Karlsen, Kenneth H. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :733-762
[10]   Anisotropic parabolic equations with measure data II [J].
Li, Fengquan .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1585-1596