Quantum phase transitions without thermodynamic limits

被引:29
作者
Brody, Dorje C. [1 ]
Hook, Daniel W.
Hughston, Lane P.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2007年 / 463卷 / 2084期
关键词
microcanonical equilibrium; quantum phase space; thermalization; decoherence; topological phase transitions;
D O I
10.1098/rspa.2007.1865
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new microcanonical equilibrium state is introduced for quantum systems with finite-dimensional state spaces. Equilibrium is characterized by a uniform distribution on a level surface of the expectation value of the Hamiltonian. The distinguishing feature of the proposed equilibrium state is that the corresponding density of states is a continuous function of the energy, and hence thermodynamic functions are well defined for finite quantum systems. The density of states, however, is not in general an analytic function. It is demonstrated that generic quantum systems therefore exhibit second-order phase transitions at finite temperatures.
引用
收藏
页码:2021 / 2030
页数:10
相关论文
共 30 条
  • [1] GEOMETRY OF QUANTUM EVOLUTION
    ANANDAN, J
    AHARONOV, Y
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (14) : 1697 - 1700
  • [2] Topology and phase transitions: From an exactly solvable model to a relation between topology and thermodynamics
    Angelani, L
    Casetti, L
    Pettini, M
    Ruocco, G
    Zamponi, F
    [J]. PHYSICAL REVIEW E, 2005, 71 (03):
  • [3] [Anonymous], 1958, Elementary Statistical Physics
  • [4] [Anonymous], 1960, MATH FDN QUANTUM STA
  • [5] Ashtekar A., 1999, EINSTEINS PATH
  • [6] Remarks on geometric quantum mechanics
    Benvegnù, A
    Sansonetto, N
    Spera, M
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2004, 51 (02) : 229 - 243
  • [7] The quantum canonical ensemble
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (12) : 6502 - 6508
  • [8] Geometric quantum mechanics
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) : 19 - 53
  • [9] BRODY DC, 2005, MICROCANONICAL DISTR
  • [10] Phase transitions and topology changes in configuration space
    Casetti, L
    Pettini, M
    Cohen, EGD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (5-6) : 1091 - 1123