A Simple Construction of Complex Equiangular Lines

被引:5
作者
Jedwab, Jonathan [1 ]
Wiebe, Amy [1 ]
机构
[1] Simon Fraser Univ, Dept Math, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
来源
ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM | 2015年 / 133卷
关键词
Combinatorial design theory; Complex equiangular lines; Hadamard matrix; Innner product; CLIFFORD GROUP; SYSTEMS;
D O I
10.1007/978-3-319-17729-8_13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set of vectors of equal norm in C-d represents equiangular lines if the magnitudes of the inner product of every pair of distinct vectors in the set are equal. The maximum size of such a set is d(2), and it is conjectured that sets of this maximum size exist in C-d for every d >= 2. We describe a new construction for maximum-sized sets of equiangular lines, exposing a previously unrecognized connection with Hadamard matrices. The construction produces a maximum-sized set of equiangular lines in dimensions 2, 3 and 8.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 19 条
[1]  
[Anonymous], OPERATOR ALGEBRAS QU
[2]  
[Anonymous], 2007, Hadamard Matrices and Their Applications
[3]  
Appleby DM, 2014, QUANTUM INF COMPUT, V14, P339
[4]  
Appleby DM, 2012, QUANTUM INF COMPUT, V12, P404
[5]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[6]  
Appleby M., 2011, 2010 2011 CLIFF LECT
[7]  
DELSARTE P, 1975, PHILIPS RES REP, V30, P91
[8]  
Godsil C., 2009, QUANTUM GEOMETRY MUB
[9]   Equiangular lines, mutually unbiased bases, and spin models [J].
Godsil, Chris ;
Roy, Aidan .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (01) :246-262
[10]  
Grassl M., 2005, Electron. Notes Discrete Math., V20, P151