A nonconforming finite element method for the stationary Navier-Stokes equations

被引:87
|
作者
Karakashian, OA [1 ]
Jureidini, WN
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Amer Univ Beirut, Dept Math, Beirut, Lebanon
关键词
finite element method; piecewise solenoidal; Stokes; nonconforming;
D O I
10.1137/S0036142996297199
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Approximations to solutions of the inhomogeneous boundary value problem for the Navier-Stokes equations are constructed via a nonstandard finite element method. The velocity field is approximated using piecewise solenoidal functions that are totally discontinuous across interelement boundaries but which are pointwise divergence free on each element. The pressure is approximated by C-0 functions. Optimal rates of convergence results are obtained requiring only local quasi-uniformity assumptions on the meshes.
引用
收藏
页码:93 / 120
页数:28
相关论文
共 50 条
  • [1] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174
  • [2] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations
    Cai, ZQ
    Douglas, J
    Ye, X
    CALCOLO, 1999, 36 (04) : 215 - 232
  • [3] Stabilized Multiscale Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhang, Tong
    Xu, Shunwei
    Deng, Jien
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [4] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    石东洋
    任金城
    龚伟
    ActaMathematicaScientia, 2011, 31 (02) : 367 - 382
  • [5] A NEW NONCONFORMING MIXED FINITE ELEMENT SCHEME FOR THE STATIONARY NAVIER-STOKES EQUATIONS
    Shi Dongyang
    Ren Jincheng
    Gong Wei
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (02) : 367 - 382
  • [6] A Two-Level Stabilized Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhu, Liping
    Chen, Zhangxin
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 579 - +
  • [7] A new local stabilized nonconforming finite element method for solving stationary Navier-Stokes equations
    Zhu, Liping
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2821 - 2831
  • [8] A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations
    Zhu, Liping
    Chen, Zhangxin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 114 : 37 - 48
  • [9] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [10] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier–Stokes equations
    Zhiqiang Cai
    Jim Douglas
    Xiu Ye
    CALCOLO, 1999, 36 : 215 - 232