High-performance asymmetric supercapacitor based on graphene-supported iron oxide and manganese sulfide

被引:24
作者
Meng, Jiangyan [1 ]
Wang, Yunying [1 ]
Xie, Xiaolin [1 ]
Quan, Hongying [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China
关键词
Asymmetric supercapacitor; Electrode material; Graphene; Iron oxide; Manganese sulfide; NEGATIVE ELECTRODES; POROUS CARBON; MNO2; COMPOSITES; NANOFLAKES; NANOSHEETS; ARRAYS;
D O I
10.1007/s11581-019-03061-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy density and power density are two key parameters of the supercapacitor. Selecting suitable positive electrode materials and negative electrode materials to construct asymmetric supercapacitor is an effective way to improve energy density. Here, a novel asymmetric supercapacitor was assembled by using alpha-Fe2O3/rGO nanocomposites as negative electrode and alpha-MnS/rGO nanocomposites as positive electrode. The fabricated alpha-MnS/rGO//alpha-Fe2O3/rGO asymmetric supercapacitors (ASCs) showed a largest potential window of 1.6 V when 3 M KOH was used as electrolyte. The ASCs displayed a maximum specific capacitance of 161.7 F g(-1) at a current density of 1 A g(-1), and the highest energy density of 57.5 Wh kg(-1) at the power density of 800 W kg(-1). These encouraging performances of the alpha-MnS/rGO//alpha-Fe2O3/rGO ASCs shed light on the use of alpha-Fe2O3/rGO nanocomposites and alpha-MnS/rGO nanocomposites as promising candidate materials for asymmetric supercapacitor applications.
引用
收藏
页码:4925 / 4933
页数:9
相关论文
共 43 条
[1]   Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique [J].
An, Cuihua ;
Wang, Yijing ;
Huang, Yanan ;
Xu, Yanan ;
Jiao, Lifang ;
Yuan, Huatang .
NANO ENERGY, 2014, 10 :125-134
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   3-D graphene cross-linked with mesoporous MnS clusters with high lithium storage capability [J].
Chen, Dezhi ;
Quan, Hongying ;
Luo, Xubiao ;
Luo, Shenglian .
SCRIPTA MATERIALIA, 2014, 76 :1-4
[4]  
Chen TY, 2016, SCI REP-UK, V6, DOI [10.1038/srep33486, 10.1038/srep24253, 10.1038/srep20001, 10.1038/srep20335]
[5]   One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors [J].
Chen, Wei ;
Xia, Chuan ;
Alshareef, Husam N. .
ACS NANO, 2014, 8 (09) :9531-9541
[6]   Smart, Stretchable Supercapacitors [J].
Chen, Xuli ;
Lin, Huijuan ;
Chen, Peining ;
Guan, Guozhen ;
Deng, Jue ;
Peng, Huisheng .
ADVANCED MATERIALS, 2014, 26 (26) :4444-+
[7]   Bendable All-Solid-State Asymmetric Supercapacitors based on MnO2 and Fe2O3 Thin Films [J].
Chodankar, Nilesh R. ;
Dubal, Deepak P. ;
Gund, Girish S. ;
Lokhande, Chandrakant D. .
ENERGY TECHNOLOGY, 2015, 3 (06) :625-631
[8]   Asymmetric Supercapacitor Electrodes and Devices [J].
Choudhary, Nitin ;
Li, Chao ;
Moore, Julian ;
Nagaiah, Narasimha ;
Zhai, Lei ;
Jung, Yeonwoong ;
Thomas, Jayan .
ADVANCED MATERIALS, 2017, 29 (21)
[9]   Ultrathin MnO2 nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors [J].
Dai, Yihui ;
Chen, Ling ;
Babayan, Vladimir ;
Cheng, Qilin ;
Saha, Petr ;
Jiang, Hao ;
Li, Chunzhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (42) :21337-21342
[10]   Nanostructured nickel-cobalt sulfide grown on nickel foam directly as supercapacitor electrodes with high specific capacitance [J].
Gong, X. F. ;
Cheng, J. P. ;
Ma, K. Y. ;
Liu, F. ;
Zhang, Li ;
Zhang, XiaoBin .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 173 :317-324