Accessing Quantitative Degrees of Functionalization on Solid Substrates via Solid-State NMR Spectroscopy

被引:32
|
作者
Gaborieau, Marianne [1 ]
Nebhani, Leena [2 ]
Graf, Robert [1 ]
Barner, Leonie [3 ]
Barner-Kowollik, Christopher [2 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] KIT, Inst Tech Chem & Polymerchem, D-76128 Karlsruhe, Germany
[3] Fraunhofer Inst Chem Technol, D-76327 Pfinztal, Berghausen, Germany
关键词
SIZE-EXCLUSION CHROMATOGRAPHY; MONODISPERSE POLY(DIVINYLBENZENE) MICROSPHERES; COMPLEX BRANCHED POLYMERS; CORE-SHELL MICROSPHERES; CROSS-POLARIZATION; PRECIPITATION POLYMERIZATION; GRAFT-POLYMERIZATION; SURFACE MODIFICATION; RAFT POLYMERIZATION; MULTIPLE-DETECTION;
D O I
10.1021/ma100149p
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The development of a solid-state nuclear magnetic resonance (NMR) method allowing the quantification of active sites (i.e., residual vinyl groups) accessible for chemical functionalization on the surface of poly(divinyl benzene) microspheres is presented. Residual vinyl groups of poly(divinyl benzene) microspheres (PDVB55 and PDVB80) were quantified via solid-state (13)C cross-polarization magic-angle spinning (CP-MAS) NMR spectroscopy. In addition, (13)C CP-MAS NMR spectroscopy allows the comparison of core and grafted microspheres functionalization on the same (arbitrary) scale in a short measuring time. This scale was calibrated by an extended absolute quantification of the vinyl groups using (13)C single pulse excitation (SPE) MAS NMR spectroscopy. The degree of cross-linking of the microspheres was calculated to be 30 and 50% for PDVB55 and PDVB80 microspheres, respectively. The number of active groups per nominal surface area is 110 and 179 groups per mm(2) for PDVB55 and PDVB80 microspheres, respectively. The loading capacities of the microspheres (e.g., 0.61 and 0.65 mmol . g(-1)) are not too far removed from those found in Merrifield resins of comparable sizes.
引用
收藏
页码:3868 / 3875
页数:8
相关论文
共 50 条
  • [1] Solid-State NMR Spectroscopy of RNA
    Marchanka, Alexander
    Carlomagno, Teresa
    BIOLOGICAL NMR, PT B, 2019, 615 : 333 - 371
  • [2] Hydrophobization of Silica Aerogels: Insights from Quantitative Solid-State NMR Spectroscopy
    Malfait, Wim J.
    Verel, Rene
    Koebel, Matthias M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (44) : 25545 - 25554
  • [3] RNA structure determination by solid-state NMR spectroscopy
    Marchanka, Alexander
    Simon, Bernd
    Althoff-Ospelt, Gerhard
    Carlomagno, Teresa
    NATURE COMMUNICATIONS, 2015, 6
  • [4] OPTO: Automated Optimization for Solid-State NMR Spectroscopy
    Borcik, Collin G.
    Dezonia, Barry
    Ravula, Thirupathi
    Harding, Benjamin D.
    Garg, Rajat
    Rienstra, Chad M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (04) : 3293 - 3303
  • [5] Trends in solid-state NMR spectroscopy and their relevance for bioanalytics
    Paasch, Silvia
    Brunner, Eike
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (06) : 2351 - 2362
  • [6] Solid-state NMR spectroscopy for characterization of RNA and RNP complexes
    Sreemantula, Arun Kumar
    Marchanka, Alexander
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (03) : 1077 - 1087
  • [7] Solid-state NMR spectroscopy of Pb-rich apatite
    Mason, Harris E.
    Hirner, Joshua J.
    Xu, Wenqian
    Parise, John B.
    Phillips, Brian L.
    MAGNETIC RESONANCE IN CHEMISTRY, 2009, 47 (12) : 1062 - 1070
  • [8] Advanced solid-state NMR spectroscopy of natural organic matter
    Mao, Jingdong
    Cao, Xiaoyan
    Olk, Dan C.
    Chu, Wenying
    Schmidt-Rohr, Klaus
    PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2017, 100 : 17 - 51
  • [9] Solid State NMR Spectroscopy
    Bai, Shi
    Wang, Wei
    Dybowski, Cecil
    ANALYTICAL CHEMISTRY, 2010, 82 (12) : 4917 - 4924
  • [10] Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy
    Lin, Eugene C.
    Opella, Stanley J.
    JOURNAL OF MAGNETIC RESONANCE, 2013, 237 : 40 - 48