Direct air capture of CO2 with aqueous peptides and crystalline guanidines

被引:34
作者
Custelcean, Radu [1 ]
Garrabrant, Kathleen A. [1 ]
Agullo, Pierrick [1 ]
Williams, Neil J. [1 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
关键词
ABSORPTION; MECHANISM; RUBISCO;
D O I
10.1016/j.xcrp.2021.100385
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Negative emission technologies, including direct air capture (DAC) of carbon dioxide, are now considered essential for mitigating climate change, but existing DAC processes tend to have excessively high energy requirements, mostly associated with sorbent regeneration. Here, we demonstrate a promising approach to DAC that combines atmospheric CO2 absorption by an aqueous oligopeptide (e.g., glycylglycine) with bicarbonate crystallization by a simple guanidine compound (e.g., glyoxal-bis-iminoguanidine). In this phase-changing system, the peptide and the guanidine compounds work in synergy, and the cyclic CO2 capacity can be maximized by matching the pK(a) values of the two components. Compared with glycine, the simpler amino acid congener, the cyclic CO2 capacity of the glycylglycine peptide combined with glyoxalbis-iminoguanidine is twice as high (0.16 mol/mol). The resulting DAC process has a significantly lower regeneration energy compared with state-of-the-art solvent-based DAC technologies.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power [J].
Brethome, Flavien M. ;
Williams, Neil J. ;
Seipp, Charles A. ;
Kidder, Michelle K. ;
Custelcean, Radu .
NATURE ENERGY, 2018, 3 (07) :553-559
[2]   Mechanism of Rubisco: The carbamate as general base [J].
Cleland, WW ;
Andrews, TJ ;
Gutteridge, S ;
Hartman, FC ;
Lorimer, GH .
CHEMICAL REVIEWS, 1998, 98 (02) :549-561
[3]   Dialing in Direct Air Capture of CO2by Crystal Engineering of Bisiminoguanidines [J].
Custelcean, Radu ;
Williams, Neil J. ;
Wang, Xiaoping ;
Garrabrant, Kathleen A. ;
Martin, Halie J. ;
Kidder, Michelle K. ;
Ivanov, Alexander S. ;
Bryantsev, Vyacheslav S. .
CHEMSUSCHEM, 2020, 13 (23) :6381-6390
[4]   Iminoguanidines: from anion recognition and separation to carbon capture [J].
Custelcean, Radu .
CHEMICAL COMMUNICATIONS, 2020, 56 (71) :10272-10280
[5]   Direct Air Capture of CO2 with Aqueous Amino Acids and Solid Bis-iminoguanidines (BIGs) [J].
Custelcean, Radu ;
Williams, Neil J. ;
Garrabrant, Kathleen A. ;
Agullo, Pierrick ;
Brethome, Flavien M. ;
Martin, Halie J. ;
Kidder, Michelle K. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (51) :23338-23346
[6]   Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation [J].
Gambhir, Ajay ;
Tavoni, Massimo .
ONE EARTH, 2019, 1 (04) :405-409
[7]   Energy-Efficient CO2 Capture from Flue Gas by Absorption with Amino Acids and Crystallization with a Bis-Iminoguanidine [J].
Garrabrant, Kathleen A. ;
Williams, Neil J. ;
Holguin, Erick ;
Brethome, Flavien M. ;
Tsouris, Costas ;
Custelcean, Radu .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (24) :10510-10515
[8]   Peptide nanotube for carbon dioxide chemisorption with regeneration properties and water compatibility [J].
Geng, Rui ;
Lu, Danqin ;
Lai, Yi ;
Wu, Sufen ;
Xu, Zhiai ;
Zhang, Wen .
CHEMICAL COMMUNICATIONS, 2019, 55 (26) :3797-3800
[9]   A Process for Capturing CO2 from the Atmosphere [J].
Keith, David W. ;
Holmes, Geoffrey ;
Angelo, David St. ;
Heidel, Kenton .
JOULE, 2018, 2 (08) :1573-1594
[10]   Designed amyloid fibers as materials for selective carbon dioxide capture [J].
Li, Dan ;
Furukawa, Hiroyasu ;
Deng, Hexiang ;
Liu, Cong ;
Yaghi, Omar M. ;
Eisenberg, David S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (01) :191-196