Polymer Chemistry for Improving Lithium Metal Anodes

被引:13
作者
Li, Sipei [1 ]
Lorandi, Francesca [1 ]
Whitacre, Jay F. [2 ,3 ]
Matyjaszewski, Krzysztof [1 ]
机构
[1] Carnegie Mellon Univ, Dept Chem, 4400 Fifth Ave, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Scott Inst Energy Innovat, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
artificial SEI; functional polymers; interfaces; lithium-metal batteries; polymer electrolytes; TRANSFER RADICAL POLYMERIZATION; TRIBLOCK COPOLYMERS; ION; ELECTROLYTES; BATTERY; OXIDE; CONDUCTIVITY; MECHANISMS;
D O I
10.1002/macp.201900379
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lithium metal anode based rechargeable batteries (LMBs) are regarded as a highly appealing alternatives to replace state-of-the-art lithium ion batteries (LIBs) for applications that demand higher energy density. Due to the highly reactive nature of metallic lithium and the related challenges with regard to dendrite issues at the anode, and electrolyte and cathode design, the industrial success of LMBs is yet to be safely achieved. Traditionally, in an LMB, the role of polymeric components is mostly limited to separators and cathode binders. With the advancement in polymer chemistry and its growing applications in materials science, it is now recognized that functional polymers can greatly improve the practical performance of an LMB. This paper discusses some representative studies, in order to demonstrate how various macromolecular approaches could be adopted to improve LMBs especially concerning the anode side, including electrolyte and artificial solid electrolyte interphase.
引用
收藏
页数:7
相关论文
共 51 条
[31]   Polymer-Based Organic Batteries [J].
Muench, Simon ;
Wild, Andreas ;
Friebe, Christian ;
Haeupler, Bernhard ;
Janoschka, Tobias ;
Schubert, Ulrich S. .
CHEMICAL REVIEWS, 2016, 116 (16) :9438-9484
[32]   A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries) [J].
Nejat, Payam ;
Jomehzadeh, Fatemeh ;
Taheri, Mohammad Mandi ;
Gohari, Mohammad ;
Abd. Majid, Muhd Zaimi .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :843-862
[33]   Mechanism of Photoinduced Metal-Free Atom Transfer Radical Polymerization: Experimental and Computational Studies [J].
Pan, Xiangcheng ;
Fang, Cheng ;
Fantin, Marco ;
Malhotra, Nikhil ;
So, Woong Young ;
Peteanu, Linda A. ;
Isse, Abdirisak A. ;
Gennaro, Armando ;
Liu, Peng ;
Matyjaszewskit, Krzysztof .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2411-2425
[34]   Photoinduced Metal-Free Atom Transfer Radical Polymerization of Acrylonitrile [J].
Pan, Xiangcheng ;
Lamson, Melissa ;
Yan, Jiajun ;
Matyjaszewski, Krzysztof .
ACS MACRO LETTERS, 2015, 4 (02) :192-196
[35]   Review-SEI: Past, Present and Future [J].
Peled, E. ;
Menkin, S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) :A1703-A1719
[36]   Composite polyether electrolytes with a poly(styrenesulfonate) lithium salt and Lewis acid type additive [J].
Prosini, PP ;
Banow, B .
ELECTROCHIMICA ACTA, 2003, 48 (13) :1899-1903
[37]   Single-ion diblock copolymers for solid-state polymer electrolytes [J].
Rolland, Julien ;
Poggi, Elio ;
Vlad, Alexandru ;
Gohy, Jean-Francois .
POLYMER, 2015, 68 :344-352
[38]   Functional Block Copolymers: Nanostructured Materials with Emerging Applications [J].
Schacher, Felix H. ;
Rupar, Paul A. ;
Manners, Ian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (32) :7898-7921
[39]   Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate [J].
Sun, XG ;
Kerr, JB .
MACROMOLECULES, 2006, 39 (01) :362-372
[40]   Charging up Stationary Energy Storage [J].
Sutherland, Brandon R. .
JOULE, 2019, 3 (01) :1-3