A micro-mechanical model for the plasticity of porous granular media and link with the Cam clay model

被引:32
作者
Bignonnet, Francois [1 ,2 ]
Dormieux, Luc [2 ]
Kondo, Djimedo [3 ]
机构
[1] Ecole Cent Lille, Lab Mecan Lille, UMR 8107, F-59655 Villeneuve Dascq, France
[2] Univ Paris Est, Lab Navier UMR 8205, CNRS, ENPC,IFSTTAR, F-77455 Marne La Vallee, France
[3] Univ Paris 06, UMR CNRS 7190, Inst Jean Le Rond dAlembert, 12 Rue Cuvier, F-75252 Paris 05, France
关键词
Ductility; Microstructures; Porous material; Granular material; Strengthening mechanisms; STRENGTH; BEHAVIOR;
D O I
10.1016/j.ijplas.2015.07.003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A micro-mechanical constitutive model for the plastic behavior of cohesive granular materials with hardening due to porosity changes is proposed. The plasticity model is based on a re-interpretation of a micro-mechanical strength model for cohesive frictional granular media. The hardening law by porosity changes explicitly stems from the homogenization process. The micro-macro plasticity model, analytical and fully explicit, depends only on two constant material parameters with a clear physical signification at the microscopic scale: the friction angle and the tensile strength of the grain to grain interfaces. The seminal ideas of critical state soil mechanics are retrieved: critical state line, state boundary surface in the stress/porosity space, hardening or softening due to change in porosity and ability to describe both dilatancy and contractancy. The established micro mechanical model is very similar to the phenomenological modified Cam clay model, providing to the latter a microstructural based interpretation. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 42 条
[31]   Multiscale approaches to describe mechanical responses induced by particle removal in granular materials [J].
Scholtes, Luc ;
Hicher, Pierre-Yves ;
Sibille, Luc .
COMPTES RENDUS MECANIQUE, 2010, 338 (10-11) :627-638
[32]   A closed-form three scale model for ductile rocks with a plastically compressible porous matrix [J].
Shen, W. Q. ;
Kondo, D. ;
Dormieux, L. ;
Shao, J. F. .
MECHANICS OF MATERIALS, 2013, 59 :73-86
[33]   Granular plasticity, a contribution from discrete mechanics [J].
Sibille, Luc ;
Hadda, Nejib ;
Nicot, Francois ;
Tordesillas, Antoinette ;
Darve, Felix .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 75 :119-139
[34]   Multi-scale pore structure of COx claystone: Towards the prediction of fluid transport [J].
Song, Yang ;
Davy, C. A. ;
Troadec, D. ;
Blanchenet, A-M. ;
Skoczylas, F. ;
Talandier, J. ;
Robinet, J. C. .
MARINE AND PETROLEUM GEOLOGY, 2015, 65 :63-82
[35]  
Steinhauser M. O., 2005, DISLOCATIONS PLASTIC
[36]   Modified Structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays [J].
Suebsuk, Jirayut ;
Horpibulsuk, Suksun ;
Liu, Martin D. .
COMPUTERS AND GEOTECHNICS, 2010, 37 (7-8) :956-968
[37]  
SUQUET P, 1995, CR ACAD SCI II, V320, P563
[38]  
Suquet P., 1997, CONTINUUM MICROMECHA
[39]   Elastoplastic deformation of a porous rock and water interaction [J].
Xie, S. Y. ;
Shao, J. F. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (12) :2195-2225
[40]   An Experimental Study and Constitutive Modeling of Saturated Porous Rocks [J].
Xie, S. Y. ;
Shao, J. F. .
ROCK MECHANICS AND ROCK ENGINEERING, 2015, 48 (01) :223-234